Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Med ; 13(15): e70072, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39108036

RESUMO

BACKGROUND: Our study aims to investigate the mechanisms through which Fc receptor-like A (FCRLA) promotes renal cell carcinoma (RCC) and to examine its significance in relation to tumor immune infiltration. MATERIALS AND METHODS: The correlation between FCRLA and data clinically related to RCC was explored using The Cancer Genome Atlas (TCGA), then validated using Gene Expression Omnibus (GEO) gene chip data. Enrichment and protein-protein interaction (PPI) network analyses were performed for FCRLA and its co-expressed genes. FCRLA was knocked down in RCC cell lines to evaluate its impact on biological behavior. Then the potential downstream regulators of FCRLA were determined by western blotting, and rescue experiments were performed for verification. The relevance between FCRLA and various immune cells was analyzed through GSEA, TIMER, and GEPIA tools. TIDE and ESTIMATE algorithms were used to predict the effect of FCRLA in immunotherapy. RESULTS: Fc receptor-like A was associated with clinical and T stages and could predict the M stage (AUC = 0.692) and 1-3- and 5-year survival rates (AUC = 0.823, 0.834, and 0.862) of RCC patients. Higher expression of FCLRA predicted an unfavorable overall survival (OS) in TCGA-RCC and GSE167573 datasets (p = 0.03, p = 0.04). FCRLA promoted the malignant biological behavior of RCC cells through the pERK1/2/-MMP2 pathway and was associated with tumor immune microenvironment in RCC. CONCLUSION: Fc receptor-like A is positively correlated with poor outcomes in RCC patients and plays an oncogenic role in RCC through the pERK1/2-MMP2 pathway. Patients with RCC might benefit from immunotherapy targeting FCRLA.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/imunologia , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/metabolismo , Neoplasias Renais/genética , Neoplasias Renais/imunologia , Neoplasias Renais/patologia , Neoplasias Renais/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Receptores Fc/genética , Receptores Fc/metabolismo , Prognóstico , Microambiente Tumoral/imunologia , Masculino , Proliferação de Células , Feminino , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Mapas de Interação de Proteínas , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo
2.
Fish Shellfish Immunol ; 99: 555-561, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32109610

RESUMO

Bursicon (burs) is a neuropeptide hormone consisting of two cystine-knot proteins (burs α and burs ß), and burs α-ß is responsible for cuticle tanning in insects. Further studies show that burs homodimers induce prophylactic immunity. Here, we investigated the hypothesis that burs homodimers act in regulating immunity in the red swamp crayfish Procambarus clarkii. We found that burs α and burs ß are expressed in neural system of crayfish. Treating crayfish with recombinant burs-homodimer proteins led to up-regulation of several anti-microbial peptide (AMP) genes, and RNAi-mediated knockdown of burs led to decreased expression of AMP genes. The burs proteins also facilitated bacterial clearance and decreased crayfish mortality upon bacterial infection. Furthermore, burs proteins activated the transcriptional factor Relish, and knockdown of Relish abolished the influence of recombinant burs homodimers on AMP induction. We infer the burs homodimers induce expression of AMP genes via Relish in crayfish and this study extends this immune signaling pathway from insects to crustaceans.


Assuntos
Proteínas de Artrópodes/genética , Astacoidea/genética , Imunidade Inata , Hormônios de Invertebrado/fisiologia , Fatores de Transcrição/genética , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Proteínas de Artrópodes/imunologia , Astacoidea/imunologia , Regulação da Expressão Gênica , Conformação Proteica , Transdução de Sinais , Fatores de Transcrição/imunologia
3.
Cell Physiol Biochem ; 46(4): 1536-1554, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29689560

RESUMO

BACKGROUND/AIMS: This study determined the role and mechanism of action of transcription factor EB (TFEB) in H2O2-induced neuronal apoptosis. METHODS: SH-SY5Y cells were treated with Akt inhibitor/activator and different concentrations of H2O2. Cell apoptosis was detected by flow cytometric analysis. Akt and TFEB phosphorylation and PARP cleavage were determined by Western blotting. HEK293T cells were transfected with different truncated TFEB mutants and HA-Akt-WT; SH-SY5Y cells were transfected with Flag-vector, Flag-TFEB, Flag-TFEB-S467A or Flag-TFEB-S467D; and TFEB interaction with Akt was determined by co-immunoprecipitation and GST pull-down assays. RESULTS: A low concentration of H2O2 induces TFEB phosphorylation at Ser467 and nuclear translocation, facilitating neuronal survival, whereas a high concentration of H2O2 promotes SH-SY5Y cell apoptosis via suppressing TFEB Ser467 phosphorylation and nuclear translocation. The TFEB-S467D mutant is more easily translocated into the nucleus than the non-phosphorylated TFEB-S467A mutant. Further, Akt physically binds to TFEB via its C-terminal tail interaction with the HLH domain of TFEB and phosphorylates TFEB at Ser467. Mutation of TFEB-Ser467 can prevent the phosphorylation of TFEB by Akt, preventing inhibition of oxidative stress-induced apoptosis. CONCLUSIONS: Oxidative stress induces neuronal apoptosis through suppressing TFEB phosphorylation at Ser467 by Akt, providing a novel therapeutic strategy for neurodegenerative diseases.


Assuntos
Apoptose/efeitos dos fármacos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Peróxido de Hidrogênio/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Androstadienos/farmacologia , Animais , Linhagem Celular Tumoral , Flavonoides/farmacologia , Células HEK293 , Humanos , Masculino , Camundongos Endogâmicos C57BL , Neurônios/citologia , Neurônios/metabolismo , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Serina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Wortmanina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA