Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Cancer Commun (Lond) ; 44(5): 554-575, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38507505

RESUMO

BACKGROUND: Immune checkpoint blockade (ICB) has revolutionized the treatment of various cancer types. Despite significant preclinical advancements in understanding mechanisms, identifying the molecular basis and predictive biomarkers for clinical ICB responses remains challenging. Recent evidence, both preclinical and clinical, underscores the pivotal role of the extracellular matrix (ECM) in modulating immune cell infiltration and behaviors. This study aimed to create an innovative classifier that leverages ECM characteristics to enhance the effectiveness of ICB therapy. METHODS: We analyzed transcriptomic collagen activity and immune signatures in 649 patients with cancer undergoing ICB therapy. This analysis led to the identification of three distinct immuno-collagenic subtypes predictive of ICB responses. We validated these subtypes using the transcriptome data from 9,363 cancer patients from The Cancer Genome Atlas (TCGA) dataset and 1,084 in-house samples. Additionally, novel therapeutic targets were identified based on these established immuno-collagenic subtypes. RESULTS: Our categorization divided tumors into three subtypes: "soft & hot" (low collagen activity and high immune infiltration), "armored & cold" (high collagen activity and low immune infiltration), and "quiescent" (low collagen activity and immune infiltration). Notably, "soft & hot" tumors exhibited the most robust response to ICB therapy across various cancer types. Mechanistically, inhibiting collagen augmented the response to ICB in preclinical models. Furthermore, these subtypes demonstrated associations with immune activity and prognostic predictive potential across multiple cancer types. Additionally, an unbiased approach identified B7 homolog 3 (B7-H3), an available drug target, as strongly expressed in "armored & cold" tumors, relating with poor prognosis. CONCLUSION: This study introduces histopathology-based universal immuno-collagenic subtypes capable of predicting ICB responses across diverse cancer types. These findings offer insights that could contribute to tailoring personalized immunotherapeutic strategies for patients with cancer.


Assuntos
Colágeno , Inibidores de Checkpoint Imunológico , Neoplasias , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias/imunologia , Neoplasias/tratamento farmacológico , Neoplasias/genética , Colágeno/metabolismo , Microambiente Tumoral/imunologia , Animais , Biomarcadores Tumorais , Matriz Extracelular/metabolismo , Camundongos , Transcriptoma , Feminino , Prognóstico
2.
Lab Med ; 2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38493322

RESUMO

Lupus nephritis (LN) is one of the most severe clinical manifestations of systemic lupus erythematosus (SLE). Notably, the clinical manifestations of LN are not always consistent with the histopathological findings. Therefore, the diagnosis and activity monitoring of this disease are challenging and largely depend on invasive renal biopsy. Renal biopsy has side effects and is associated with the risk of bleeding and infection. There is a growing interest in the development of novel noninvasive biomarkers for LN. In this review, we summarize most of the LN biomarkers discovered so far by correlating current knowledge with future perspectives. These biomarkers fundamentally reflect the biological processes of kidney damage and repair during disease. Furthermore, this review highlights the role of urinary cell phenotype detection in the diagnosis, monitoring, and treatment of LN and summarizes the limitations and countermeasures of this test.

3.
Theranostics ; 14(4): 1500-1516, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38389841

RESUMO

Rationale: Angiogenesis expedites tissue impairment in many diseases, including age-related macular degeneration (AMD), a leading cause of irreversible blindness in elderly. A substantial proportion of neovascular AMD patients, characterized by aberrant choroidal neovascularization (CNV), exhibit poor responses or adverse reactions to anti-VEGF therapy. Herein, we aimed to unveil the function of newly identified transfer RNA-derived small RNA, tRF-Glu-CTC, in the pathology of CNV and determine its potential in inhibiting angiogenesis. Methods: Small non-coding RNA sequencing and quantitative polymerase chain reaction were conducted to detect expression pattern of tRF-Glu-CTC in CNV development. Immunofluorescence staining, fundus fluorescein angiography and ex vivo choroidal sprouting assays were employed for the evaluation of tRF-Glu-CTC's function in CNV development. The role of tRF-Glu-CTC in endothelial cells were determined by in vitro endothelial cell proliferation, migration and tube formation assays. Transcriptome sequencing, dual-luciferase reporter assay and in vitro experiments were conducted to investigate downstream mechanism of tRF-Glu-CTC mediated pathology. Results: tRF-Glu-CTC exhibited substantial up-regulation in AMD patients, laser-induced CNV model, and endothelial cells under hypoxia condition, which is a hallmark of CNV. Inhibiting tRF-Glu-CTC reduced angiogenesis and hypoxia stress in the neovascular region without neuroretina toxicity in laser-induced CNV model, showing an anti-angiogenic effect comparable to bevacizumab, while overexpression of tRF-Glu-CTC significantly augmented CNV. Mechanically, under hypoxia condition, angiogenin was involved in the production of tRF-Glu-CTC, which in turn triggered endothelial cell tubulogenesis, migration and promoted the secretion of inflammatory factors via the suppression of vasohibin 1 (VASH1). When downregulating VASH1 expression, the inhibition of tRF-Glu-CTC showed minimal suppression on angiogenesis. Conclusions: This study demonstrated the important role of tRF-Glu-CTC in the progression of angiogenesis. Targeting of tRF-Glu-CTC may be an alternative to current anti-VEGF therapy for CNV in AMD and other conditions with angiogenesis.


Assuntos
Neovascularização de Coroide , Degeneração Macular Exsudativa , Humanos , Idoso , Inibidores da Angiogênese/farmacologia , Células Endoteliais/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Acuidade Visual , Degeneração Macular Exsudativa/tratamento farmacológico , Degeneração Macular Exsudativa/genética , Neovascularização de Coroide/tratamento farmacológico , Hipóxia/metabolismo , Proteínas de Ciclo Celular/metabolismo
4.
Nat Commun ; 14(1): 7610, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993438

RESUMO

Metabolic reprogramming in malignant cells is a hallmark of cancer that relies on augmented glycolytic metabolism to support their growth, invasion, and metastasis. However, the impact of global adipose metabolism on tumor growth and the drug development by targeting adipose metabolism remain largely unexplored. Here we show that a therapeutic paradigm of drugs is effective for treating various cancer types by browning adipose tissues. Mirabegron, a clinically available drug for overactive bladders, displays potent anticancer effects in various animal cancer models, including untreatable cancers such as pancreatic ductal adenocarcinoma and hepatocellular carcinoma, via the browning of adipose tissues. Genetic deletion of the uncoupling protein 1, a key thermogenic protein in adipose tissues, ablates the anticancer effect. Similarly, the removal of brown adipose tissue, which is responsible for non-shivering thermogenesis, attenuates the anticancer activity of mirabegron. These findings demonstrate that mirabegron represents a paradigm of anticancer drugs with a distinct mechanism for the effective treatment of multiple cancers.


Assuntos
Tecido Adiposo Branco , Neoplasias , Animais , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Marrom/metabolismo , Acetanilidas/farmacologia , Acetanilidas/metabolismo , Metabolismo Energético , Termogênese , Neoplasias/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
5.
ACS Appl Mater Interfaces ; 15(43): 50002-50014, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37851535

RESUMO

Two-dimensional (2D) nanomaterials as drug carriers and photosensitizers have emerged as a promising antitumor strategy. However, our understanding of 2D antitumor nanomaterials is limited to intrinsic properties or additive modification of different materials. Subtractive structural engineering of 2D nanomaterials for better antitumor efficacy is largely overlooked. Here, subtractively engineered 2D MXenes with uniformly distributed nanopores are synthesized. The nanoporous defects endowed MXene with enhanced surface plasmon resonance effect for better optical absorbance performance and strong exciton-phonon coupling for higher photothermal conversion efficiency. In addition, porous structure improves the binding ability between drug and unsaturated bonds, thus promoting drug-loading capacity and reducing uncontrolled drug release. Furthermore, the porous structure provides adhesion sites for filopodia, thereby promoting the cellular internalization of the drug. Clinically, osteosarcoma is the most common bone malignancy routinely treated with doxorubicin-based chemotherapy. There have been no significant treatment advances in the past decade. As a proof-of-concept, nanoporous MXene loaded with doxorubicin is developed for treating human osteosarcoma cells. The porous MXene platform results in a higher amount of doxorubicin-loading, faster near-infrared (NIR)-controlled doxorubicin release, higher photothermal efficacy under NIR irradiation, and increased cell adhesion and internalization. This facile method pioneers a new paradigm for enhancing 2D material functions and is attractive for tumor treatment.


Assuntos
Neoplasias Ósseas , Nanoporos , Osteossarcoma , Humanos , Nanomedicina , Doxorrubicina/farmacologia , Doxorrubicina/química , Osteossarcoma/tratamento farmacológico , Fototerapia , Linhagem Celular Tumoral
6.
Adv Drug Deliv Rev ; 201: 115084, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37689278

RESUMO

Ocular surface neovascularization and its resulting pathological changes significantly alter corneal refraction and obstruct the light path to the retina, and hence is a major cause of vision loss. Various factors such as infection, irritation, trauma, dry eye, and ocular surface surgery trigger neovascularization via angiogenesis and lymphangiogenesis dependent on VEGF-related and alternative mechanisms. Recent advances in antiangiogenic drugs, nanotechnology, gene therapy, surgical equipment and techniques, animal models, and drug delivery strategies have provided a range of novel therapeutic options for the treatment of ocular surface neovascularization. In this review article, we comprehensively discuss the etiology and mechanisms of corneal neovascularization and other types of ocular surface neovascularization, as well as emerging animal models and drug delivery strategies that facilitate its management.


Assuntos
Neovascularização da Córnea , Medicina Molecular , Animais , Neovascularização Patológica/tratamento farmacológico , Neovascularização da Córnea/tratamento farmacológico , Neovascularização da Córnea/patologia , Retina/patologia , Inibidores da Angiogênese/uso terapêutico
7.
Signal Transduct Target Ther ; 8(1): 305, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37591843

RESUMO

Although VEGF-B was discovered as a VEGF-A homolog a long time ago, the angiogenic effect of VEGF-B remains poorly understood with limited and diverse findings from different groups. Notwithstanding, drugs that inhibit VEGF-B together with other VEGF family members are being used to treat patients with various neovascular diseases. It is therefore critical to have a better understanding of the angiogenic effect of VEGF-B and the underlying mechanisms. Using comprehensive in vitro and in vivo methods and models, we reveal here for the first time an unexpected and surprising function of VEGF-B as an endogenous inhibitor of angiogenesis by inhibiting the FGF2/FGFR1 pathway when the latter is abundantly expressed. Mechanistically, we unveil that VEGF-B binds to FGFR1, induces FGFR1/VEGFR1 complex formation, and suppresses FGF2-induced Erk activation, and inhibits FGF2-driven angiogenesis and tumor growth. Our work uncovers a previously unrecognized novel function of VEGF-B in tethering the FGF2/FGFR1 pathway. Given the anti-angiogenic nature of VEGF-B under conditions of high FGF2/FGFR1 levels, caution is warranted when modulating VEGF-B activity to treat neovascular diseases.


Assuntos
Fator 2 de Crescimento de Fibroblastos , Fator B de Crescimento do Endotélio Vascular , Humanos , Fator 2 de Crescimento de Fibroblastos/genética , Imunoterapia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética
8.
Virol J ; 20(1): 158, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37468960

RESUMO

African swine fever (ASF) is an acute infectious haemorrhagic fever of pigs caused by African swine fever virus (ASFV). Aloe-emodin (Ae) is an active ingredient of Chinese herbs with antiviral, anticancer, and anti-inflammatory effects. We investigated the antiviral activity and mechanism of action of Ae against ASFV using Real-time quantitative PCR (qPCR), western blotting, and indirect immunofluorescence assays. Ae significantly inhibited ASFV replication. Furthermore, transcriptomic analysis revealed that ASFV infection activated the NF-κB signaling pathway in the early stage and the apoptosis pathway in the late stage. Ae significantly downregulated the expression levels of MyD88, phosphor-NF-κB p65, and pIκB proteins as well as the mRNA levels of IL-1ß and IL-8 in porcine alveolar macrophages (PAMs) infected with ASFV, thereby inhibiting the activation of the NF-κB signaling pathway induced by ASFV. Flow cytometry and western blot analysis revealed that Ae significantly increased the percentage of ASFV-induced apoptotic cells. Additionally, Ae promoted apoptosis by upregulating the expression levels of cleaved-caspase3 and Bax proteins and downregulating the expression levels of Bcl-2 proteins. This suggests that Ae promotes apoptosis by inhibiting the NF-κB pathway, resulting in inhibition of ASFV replication. These findings have further improved therapeutic reserves for the prevention and treatment of ASF.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Aloe , Emodina , Animais , Vírus da Febre Suína Africana/genética , Aloe/metabolismo , Antivirais/farmacologia , Apoptose , Emodina/farmacologia , NF-kappa B/metabolismo , Transdução de Sinais , Suínos , Replicação Viral
9.
Proc Natl Acad Sci U S A ; 120(29): e2303740120, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37428914

RESUMO

Defining reliable surrogate markers and overcoming drug resistance are the most challenging issues for improving therapeutic outcomes of antiangiogenic drugs (AADs) in cancer patients. At the time of this writing, no biomarkers are clinically available to predict AAD therapeutic benefits and drug resistance. Here, we uncovered a unique mechanism of AAD resistance in epithelial carcinomas with KRAS mutations that targeted angiopoietin 2 (ANG2) to circumvent antivascular endothelial growth factor (anti-VEGF) responses. Mechanistically, KRAS mutations up-regulated the FOXC2 transcription factor that directly elevated ANG2 expression at the transcriptional level. ANG2 bestowed anti-VEGF resistance as an alternative pathway to augment VEGF-independent tumor angiogenesis. Most colorectal and pancreatic cancers with KRAS mutations were intrinsically resistant to monotherapies of anti-VEGF or anti-ANG2 drugs. However, combination therapy with anti-VEGF and anti-ANG2 drugs produced synergistic and potent anticancer effects in KRAS-mutated cancers. Together, these data demonstrate that KRAS mutations in tumors serve as a predictive marker for anti-VEGF resistance and are susceptible to combination therapy with anti-VEGF and anti-ANG2 drugs.


Assuntos
Carcinoma , Fatores de Crescimento Endotelial , Humanos , Fatores de Crescimento Endotelial/genética , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Angiopoietina-2/genética , Angiopoietina-2/metabolismo , Angiopoietina-1/metabolismo
10.
Adv Sci (Weinh) ; 10(24): e2301505, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37330661

RESUMO

The circadian clock in animals and humans plays crucial roles in multiple physiological processes. Disruption of circadian homeostasis causes detrimental effects. Here, it is demonstrated that the disruption of the circadian rhythm by genetic deletion of mouse brain and muscle ARNT-like 1 (Bmal1) gene, coding for the key clock transcription factor, augments an exacerbated fibrotic phenotype in various tumors. Accretion of cancer-associated fibroblasts (CAFs), especially the alpha smooth muscle actin positive myoCAFs, accelerates tumor growth rates and metastatic potentials. Mechanistically, deletion of Bmal1 abrogates expression of its transcriptionally targeted plasminogen activator inhibitor-1 (PAI-1). Consequently, decreased levels of PAI-1 in the tumor microenvironment instigate plasmin activation through upregulation of tissue plasminogen activator and urokinase plasminogen activator. The activated plasmin converts latent TGF-ß into its activated form, which potently induces tumor fibrosis and the transition of CAFs into myoCAFs, the latter promoting cancer metastasis. Pharmacological inhibition of the TGF-ß signaling largely ablates the metastatic potentials of colorectal cancer, pancreatic ductal adenocarcinoma, and hepatocellular carcinoma. Together, these data provide novel mechanistic insights into disruption of the circadian clock in tumor growth and metastasis. It is reasonably speculated that normalization of the circadian rhythm in patients provides a novel paradigm for cancer therapy.


Assuntos
Neoplasias Hepáticas , Fator de Crescimento Transformador beta , Camundongos , Humanos , Animais , Fator de Crescimento Transformador beta/metabolismo , Ativador de Plasminogênio Tecidual/metabolismo , Fibrinolisina/metabolismo , Inibidor 1 de Ativador de Plasminogênio/genética , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Músculos , Encéfalo/metabolismo , Microambiente Tumoral
11.
J Virol ; 97(4): e0188922, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37022174

RESUMO

African swine fever (ASF) is a highly infectious disease caused by the African swine fever virus (ASFV) in swine. It is characterized by the death of cells in infected tissues. However, the molecular mechanism of ASFV-induced cell death in porcine alveolar macrophages (PAMs) remains largely unknown. In this study, transcriptome sequencing of ASFV-infected PAMs found that ASFV activated the JAK2-STAT3 pathway in the early stages and apoptosis in the late stages of infection. Meanwhile, the JAK2-STAT3 pathway was confirmed to be essential for ASFV replication. AG490 and andrographolide (AND) inhibited the JAK2-STAT3 pathway, promoted ASFV-induced apoptosis, and exerted antiviral effects. Additionally, CD2v promoted STAT3 transcription and phosphorylation as well as translocation into the nucleus. CD2v is the main envelope glycoprotein of the ASFV, and further investigations showed that CD2v deletion downregulates the JAK2-STAT3 pathway and promotes apoptosis to inhibit ASFV replication. Furthermore, we discovered that CD2v interacts with CSF2RA, which is a hematopoietic receptor superfamily member in myeloid cells and a key receptor protein that activates receptor-associated JAK and STAT proteins. In this study, CSF2RA small interfering RNA (siRNA) downregulated the JAK2-STAT3 pathway and promoted apoptosis to inhibit ASFV replication. Taken together, ASFV replication requires the JAK2-STAT3 pathway, while CD2v interacts with CSF2RA to regulate the JAK2-STAT3 pathway and inhibit apoptosis to facilitate virus replication. These results provide a theoretical basis for the escape mechanism and pathogenesis of ASFV. IMPORTANCE African swine fever is a hemorrhagic disease caused by the African swine fever virus (ASFV), which infects pigs of different breeds and ages, with a fatality rate of up to 100%. It is one of the key diseases affecting the global livestock industry. Currently, no commercial vaccines or antiviral drugs are available. Here, we show that ASFV replicates via the JAK2-STAT3 pathway. More specifically, ASFV CD2v interacts with CSF2RA to activate the JAK2-STAT3 pathway and inhibit apoptosis, thereby maintaining the survival of infected cells and promoting viral replication. This study revealed an important implication of the JAK2-STAT3 pathway in ASFV infection and identified a novel mechanism by which CD2v has evolved to interact with CSF2RA and maintain JAK2-STAT3 pathway activation to inhibit apoptosis, thus elucidating new information regarding the signal reprogramming of host cells by ASFV.


Assuntos
Vírus da Febre Suína Africana , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos , Proteínas do Envelope Viral , Replicação Viral , Animais , Febre Suína Africana/virologia , Vírus da Febre Suína Africana/genética , Apoptose/genética , Suínos , Replicação Viral/genética , Proteínas do Envelope Viral/metabolismo , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Interações entre Hospedeiro e Microrganismos , Regulação para Baixo
12.
Cancer Commun (Lond) ; 43(6): 637-660, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37120719

RESUMO

BACKGROUND: Tumors possess incessant growth features, and expansion of their masses demands sufficient oxygen supply by red blood cells (RBCs). In adult mammals, the bone marrow (BM) is the main organ regulating hematopoiesis with dedicated manners. Other than BM, extramedullary hematopoiesis is discovered in various pathophysiological settings. However, whether tumors can contribute to hematopoiesis is completely unknown. Accumulating evidence shows that, in the tumor microenvironment (TME), perivascular localized cells retain progenitor cell properties and can differentiate into other cells. Here, we sought to better understand whether and how perivascular localized pericytes in tumors manipulate hematopoiesis. METHODS: To test if vascular cells can differentiate into RBCs, genome-wide expression profiling was performed using mouse-derived pericytes. Genetic tracing of perivascular localized cells employing NG2-CreERT2:R26R-tdTomato mouse strain was used to validate the findings in vivo. Fluorescence-activated cell sorting (FACS), single-cell sequencing, and colony formation assays were applied for biological studies. The production of erythroid differentiation-specific cytokine, erythropoietin (EPO), in TME was checked using quantitative polymerase chain reaction (qPCR), enzyme-linked immunosorbent assay (ELISA, magnetic-activated cell sorting and immunohistochemistry. To investigate BM function in tumor erythropoiesis, BM transplantation mouse models were employed. RESULTS: Genome-wide expression profiling showed that in response to platelet-derived growth factor subunit B (PDGF-B), neural/glial antigen 2 (NG2)+ perivascular localized cells exhibited hematopoietic stem and progenitor-like features and underwent differentiation towards the erythroid lineage. PDGF-B simultaneously targeted cancer-associated fibroblasts to produce high levels of EPO, a crucial hormone that necessitates erythropoiesis. FACS analysis using genetic tracing of NG2+ cells in tumors defined the perivascular localized cell-derived subpopulation of hematopoietic cells. Single-cell sequencing and colony formation assays validated the fact that, upon PDGF-B stimulation, NG2+ cells isolated from tumors acted as erythroblast progenitor cells, which were distinctive from the canonical BM hematopoietic stem cells. CONCLUSIONS: Our data provide a new concept of hematopoiesis within tumor tissues and novel mechanistic insights into perivascular localized cell-derived erythroid cells within TME. Targeting tumor hematopoiesis is a novel therapeutic concept for treating various cancers that may have profound impacts on cancer therapy.


Assuntos
Eritropoese , Neoplasias , Animais , Camundongos , Medula Óssea/fisiologia , Diferenciação Celular , Mamíferos , Neoplasias/metabolismo , Pericitos , Microambiente Tumoral
14.
Diabetes Care ; 46(1): 46-55, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36382801

RESUMO

OBJECTIVE: Diabetes that arises from chronic pancreatitis (CP) is associated with increased morbidity and mortality. Methods to predict which patients with CP are at greatest risk for diabetes are urgently needed. We aimed to examine independent risk factors for diabetes in a large cohort of patients with CP. RESEARCH DESIGN AND METHODS: This cross-sectional study comprised 645 individuals with CP enrolled in the PROCEED study, of whom 276 had diabetes. We conducted univariable and multivariable regression analyses of potential risk factors for diabetes. Model performance was assessed by area under the receiver operating characteristic curve (AUROC) analysis, and accuracy was evaluated by cross validation. Exploratory analyses were stratified according to the timing of development of diabetes relative to the diagnosis of pancreatitis. RESULTS: Independent correlates of diabetes in CP included risk factors for type 2 diabetes (older age, overweight/obese status, male sex, non-White race, tobacco use) as well as pancreatic disease-related factors (history of acute pancreatitis complications, nonalcoholic etiology of CP, exocrine pancreatic dysfunction, pancreatic calcification, pancreatic atrophy) (AUROC 0.745). Type 2 diabetes risk factors were predominant for diabetes occurring before pancreatitis, and pancreatic disease-related factors were predominant for diabetes occurring after pancreatitis. CONCLUSIONS: Multiple factors are associated with diabetes in CP, including canonical risk factors for type 2 diabetes and features associated with pancreatitis severity. This study lays the groundwork for the future development of models integrating clinical and nonclinical data to identify patients with CP at risk for diabetes and identifies modifiable risk factors (obesity, smoking) on which to focus for diabetes prevention.


Assuntos
Diabetes Mellitus Tipo 2 , Pancreatite Crônica , Humanos , Masculino , Diabetes Mellitus Tipo 2/complicações , Doença Aguda , Estudos Transversais , Modelos Estatísticos , Prognóstico , Pancreatite Crônica/complicações , Fatores de Risco , Obesidade/complicações
15.
Nat Metab ; 4(12): 1674-1683, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36482111

RESUMO

Patients with COVID-19 frequently manifest adipose atrophy, weight loss and cachexia, which significantly contribute to poor quality of life and mortality1,2. Browning of white adipose tissue and activation of brown adipose tissue are effective processes for energy expenditure3-7; however, mechanistic and functional links between SARS-CoV-2 infection and adipose thermogenesis have not been studied. In this study, we provide experimental evidence that SARS-CoV-2 infection augments adipose browning and non-shivering thermogenesis (NST), which contributes to adipose atrophy and body weight loss. In mouse and hamster models, SARS-CoV-2 infection activates brown adipose tissue and instigates a browning or beige phenotype of white adipose tissues, including augmented NST. This browning phenotype was also observed in post-mortem adipose tissue of four patients who died of COVID-19. Mechanistically, high levels of vascular endothelial growth factor (VEGF) in the adipose tissue induces adipose browning through vasculature-adipocyte interaction. Inhibition of VEGF blocks COVID-19-induced adipose tissue browning and NST and partially prevents infection-induced body weight loss. Our data suggest that the browning of adipose tissues induced by COVID-19 can contribute to adipose tissue atrophy and weight loss observed during infection. Inhibition of VEGF signaling may represent an effective approach for preventing and treating COVID-19-associated weight loss.


Assuntos
COVID-19 , Fator A de Crescimento do Endotélio Vascular , Camundongos , Animais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia , Qualidade de Vida , COVID-19/metabolismo , SARS-CoV-2 , Tecido Adiposo Marrom/metabolismo , Obesidade/metabolismo , Redução de Peso , Mamíferos
17.
Sci Transl Med ; 14(673): eabn9061, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36449600

RESUMO

Chemotherapy-induced thrombocytopenia (CIT) is a severe complication in patients with cancer that can lead to impaired therapeutic outcome and survival. Clinically, therapeutic options for CIT are limited by severe adverse effects and high economic burdens. Here, we demonstrate that ketogenic diets alleviate CIT in both animals and humans without causing thrombocytosis. Mechanistically, ketogenic diet-induced circulating ß-hydroxybutyrate (ß-OHB) increased histone H3 acetylation in bone marrow megakaryocytes. Gain- and loss-of-function experiments revealed a distinct role of 3-ß-hydroxybutyrate dehydrogenase (BDH)-mediated ketone body metabolism in promoting histone acetylation, which promoted the transcription of platelet biogenesis genes and induced thrombocytopoiesis. Genetic depletion of the megakaryocyte-specific ketone body transporter monocarboxylate transporter 1 (MCT1) or pharmacological targeting of MCT1 blocked ß-OHB-induced thrombocytopoiesis in mice. A ketogenesis-promoting diet alleviated CIT in mouse models. Moreover, a ketogenic diet modestly increased platelet counts without causing thrombocytosis in healthy volunteers, and a ketogenic lifestyle inversely correlated with CIT in patients with cancer. Together, we provide mechanistic insights into a ketone body-MCT1-BDH-histone acetylation-platelet biogenesis axis in megakaryocytes and propose a nontoxic, low-cost dietary intervention for combating CIT.


Assuntos
Antineoplásicos , Trombocitopenia , Trombocitose , Humanos , Camundongos , Animais , Megacariócitos , Acetilação , Histonas , Trombocitopenia/induzido quimicamente , Corpos Cetônicos , Dieta , Ácido 3-Hidroxibutírico
18.
Nanoscale Adv ; 4(7): 1718-1726, 2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36132163

RESUMO

A sustainable and low-cost separator is highly required for electrochemical energy storage systems. Herein, a type of modified natural wood film with excellent mechanical properties, ion conductivity and thermal stability is fabricated for high-performance lithium ion batteries. Using the modified natural wood film as a separator, the fabricated symmetric cell exhibits a more stable and lower plating/stripping voltage for Li than that of the cell with a commercialized polypropylene (PP) separator. The LiFePO4/Li half-cell with the modified wood film separator shows a small polarization voltage and high discharge capacity because of the multi-level nanostructure and abundant functional groups of the modified wood films. The results suggest that the modified wood films are a promising candidate for use as separators in lithium ion batteries. As desired, the LiFePO4/Li half-cells with the modified wood film separator deliver much higher discharge capacities and more stable Coulomb efficiency over two hundred charge/discharge cycles than the cell based on the PP separator. The present work systematically investigate the feasibility of abundant and cheap natural wood-derived materials for use as efficient separators instead of synthetic polymers for high-performance lithium ion batteries with long cycle life.

19.
Cell Death Dis ; 13(8): 724, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35985991

RESUMO

Nasopharyngeal carcinoma (NPC) clinical trials show that antiangiogenic drugs (AADs) fail to achieve the expected efficacy, and combining AAD with chemoradiotherapy does not show superiority over chemoradiotherapy alone. Accumulating evidence suggests the intrinsic AAD resistance in NPC patients with poorly understood molecular mechanisms. Here, we describe NPC-specific FGF-2 expression-triggered, VEGF-independent angiogenesis as a mechanism of AAD resistance. Angiogenic factors screening between AAD-sensitive cancer type and AAD-resistant NPC showed high FGF-2 expression in NPC in both xenograft models and clinical samples. Mechanistically, the FGF-2-FGFR1-MYC axis drove endothelial cell survival and proliferation as an alternative to VEGF-VEGFR2-MYC signaling. Genetic knockdown of FGF-2 in NPC tumor cells reduced tumor angiogenesis, enhanced AAD sensitivity, and reduced pulmonary metastasis. Moreover, lenvatinib, an FDA recently approved multi-kinase inhibitor targeting both VEGFR2 and FGFR1, effectively inhibits the tumor vasculature, and exhibited robust anti-tumor effects in NPC-bearing nude mice and humanized mice compared with an agent equivalent to bevacizumab. These findings provide mechanistic insights on FGF-2 signaling in the modulation of VEGF pathway activation in the NPC microenvironment and propose an effective NPC-targeted therapy by using a clinically available drug.


Assuntos
Inibidores da Angiogênese , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Compostos de Fenilureia , Quinolinas , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Fator 2 de Crescimento de Fibroblastos/farmacologia , Humanos , Camundongos , Camundongos Nus , Carcinoma Nasofaríngeo/tratamento farmacológico , Neoplasias Nasofaríngeas/tratamento farmacológico , Neovascularização Patológica/metabolismo , Compostos de Fenilureia/farmacologia , Compostos de Fenilureia/uso terapêutico , Proteínas Proto-Oncogênicas c-myc/metabolismo , Quinolinas/farmacologia , Quinolinas/uso terapêutico , Transdução de Sinais , Microambiente Tumoral , Fator A de Crescimento do Endotélio Vascular/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Nature ; 608(7922): 421-428, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35922508

RESUMO

Glucose uptake is essential for cancer glycolysis and is involved in non-shivering thermogenesis of adipose tissues1-6. Most cancers use glycolysis to harness energy for their infinite growth, invasion and metastasis2,7,8. Activation of thermogenic metabolism in brown adipose tissue (BAT) by cold and drugs instigates blood glucose uptake in adipocytes4,5,9. However, the functional effects of the global metabolic changes associated with BAT activation on tumour growth are unclear. Here we show that exposure of tumour-bearing mice to cold conditions markedly inhibits the growth of various types of solid tumours, including clinically untreatable cancers such as pancreatic cancers. Mechanistically, cold-induced BAT activation substantially decreases blood glucose and impedes the glycolysis-based metabolism in cancer cells. The removal of BAT and feeding on a high-glucose diet under cold exposure restore tumour growth, and genetic deletion of Ucp1-the key mediator for BAT-thermogenesis-ablates the cold-triggered anticancer effect. In a pilot human study, mild cold exposure activates a substantial amount of BAT in both healthy humans and a patient with cancer with mitigated glucose uptake in the tumour tissue. These findings provide a previously undescribed concept and paradigm for cancer therapy that uses a simple and effective approach. We anticipate that cold exposure and activation of BAT through any other approach, such as drugs and devices either alone or in combination with other anticancer therapeutics, will provide a general approach for the effective treatment of various cancers.


Assuntos
Tecido Adiposo Marrom , Temperatura Baixa , Metabolismo Energético , Neoplasias , Adipócitos/metabolismo , Tecido Adiposo Marrom/metabolismo , Animais , Glicemia/metabolismo , Terapia Combinada , Glicólise , Humanos , Camundongos , Neoplasias/metabolismo , Neoplasias/prevenção & controle , Neoplasias/terapia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/prevenção & controle , Neoplasias Pancreáticas/terapia , Termogênese/genética , Proteína Desacopladora 1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA