Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomed J ; : 100730, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38643825

RESUMO

BACKGROUND: Mitochondrial dysfunction is a critical factor in the pathogenesis of acute kidney injury (AKI). Agents that ameliorate mitochondrial dysfunction hold potential for AKI treatment. The objective of this study was to investigate the impact of olesoxime, a novel mitochondrial-targeted agent, on cisplatin-induced AKI. METHODS: In vivo, a cisplatin-induced AKI mouse model was established by administering a single intraperitoneal dose of cisplatin (25 mg/kg) to male C57BL/6 mice for 72 hours, followed by gavage of either olesoxime or a control solution. In vitro, human proximal tubular HK2 cells were cultured and subjected to treatments with cisplatin, either in the presence or absence of olesoxime. RESULTS: In vivo, our findings demonstrated that olesoxime administration significantly mitigated the nephrotoxic effects of cisplatin in mice, as evidenced by reduced blood urea nitrogen (BUN) and serum creatinine (SCr) levels, improved renal histopathology, and decreased expression of renal tubular injury markers such as kidney injury molecule 1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL). Furthermore, olesoxime administration markedly reduced cisplatin-induced apoptosis, inflammation, and oxidative stress in the kidneys of AKI mice. Additionally, olesoxime treatment effectively restored mitochondrial function in the kidneys of AKI mice. In vitro, our results indicated that olesoxime treatment protected against cisplatin-induced apoptosis and mitochondrial dysfunction in cultured HK2 cells. Notably, cisplatin's anticancer effects were unaffected by olesoxime treatment in human cancer cells. CONCLUSION: The results of this study suggest that olesoxime is a viable and efficient therapeutic agent in the treatment of cisplatin-induced acute kidney injury presumably by alleviating mitochondrial dysfunction.

2.
Plants (Basel) ; 13(5)2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38475473

RESUMO

Cadmium (Cd) hampers plant growth and harms photosynthesis. Glutamate (Glu) responds to Cd stress and activates the Ca2+ signaling pathway in duckweed, emphasizing Glu's significant role in Cd stress. In this study, we overexpressed phosphoserine aminotransferase (PSAT), a crucial enzyme in Glu metabolism, in duckweed. We investigated the response of PSAT-transgenic duckweed to Cd stress, including growth, Glu metabolism, photosynthesis, antioxidant enzyme activity, Cd2+ flux, and gene expression. Remarkably, under Cd stress, PSAT-transgenic duckweed prevented root abscission, upregulated the expression of photosynthesis ability, and increased Chl a, Chl b, and Chl a + b levels by 13.9%, 7%, and 12.6%, respectively. Antioxidant enzyme activity (CAT and SOD) also improved under Cd stress, reducing cell membrane damage in PSAT-transgenic duckweeds. Transcriptomic analysis revealed an upregulation of Glu metabolism-related enzymes in PSAT-transgenic duckweed under Cd stress. Moreover, metabolomic analysis showed a 68.4% increase in Glu content in PSAT duckweed exposed to Cd. This study sheds novel insights into the role of PSAT in enhancing plant resistance to Cd stress, establishing a theoretical basis for the impact of Glu metabolism on heavy metal tolerance in plants.

3.
Mol Med ; 29(1): 147, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891461

RESUMO

BACKGROUND: Chronic kidney disease (CKD) involves a variety of pathological processes, and ferroptosis plays a vital role in CKD progression. Targeting ferroptosis is a promising strategy for the treatment of CKD. However, inhibitors of ferroptosis have not been used in the clinical treatment of CKD. Vitexin is a natural flavonoid with many biological activities and protective effects against various diseases. However, whether vitexin can prevent the progression of CKD is not known. METHODS: In vivo, the effect of vitexin on CKD was evaluated by using mouse models of unilateral ureteral obstruction (UUO) and unilateral ischemia-reperfusion (UIR). Western blotting, Sirius red staining and transmission electron microscopy were used to analyze renal tubular injury, interstitial fibrosis, and inflammation in the kidneys of UUO and UIR mice. In vitro, CCK8 assays and lipid peroxidation assays were performed to analyze cell viability and lipid peroxidation in human renal tubular epithelial cells (HK2 cells) induced by erastin. The activation of renal fibroblasts (NRK-49 F cells) was also analyzed. Additionally, an in-silico protein-drug docking model and coimmunoprecipitation were performed to determine the direct substrate of vitexin. RESULTS: In vivo, vitexin treatment significantly ameliorated renal tubular injury, interstitial fibrosis, and inflammation in the kidneys of UUO and UIR mice. Additionally, our results showed that vitexin significantly attenuated UUO- and UIR-induced ferroptosis in renal tubular epithelial cells by upregulating glutathione peroxidase 4 (GPX4) protein levels and inhibiting lipid peroxidation in mouse kidneys. In vitro, treatment with vitexin inhibited erastin-induced ferroptosis in HK2 cells. Moreover, vitexin inhibited the expression of collagen I and α-SMA (alpha-smooth muscle actin) in NRK-49 F cells induced by the supernatant of erastin-treated HK2 cells. Mechanistically, our results suggested that vitexin could activate the NRF2/heme oxygenase-1 (HO-1) pathway by inhibiting the KEAP1- and ubiquitination-mediated degradation of NRF2, thereby increasing the expression of GPX4, and further inhibiting lipid peroxidation and ferroptosis. Additionally, knockout of NRF2 greatly inhibited the antiferroptotic effects of vitexin. CONCLUSIONS: Taken together, our results indicate that vitexin can protect against renal tubular epithelial cell ferroptosis in CKD by activating the KEAP1/NRF2/HO-1 pathway and is a promising drug to treat CKD.


Assuntos
Ferroptose , Insuficiência Renal Crônica , Obstrução Ureteral , Camundongos , Humanos , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Rim/metabolismo , Insuficiência Renal Crônica/metabolismo , Obstrução Ureteral/complicações , Obstrução Ureteral/tratamento farmacológico , Obstrução Ureteral/metabolismo , Inflamação/metabolismo , Células Epiteliais/metabolismo , Fibrose
4.
Am J Physiol Renal Physiol ; 318(4): F994-F1005, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32068461

RESUMO

Renal ischemia-reperfusion (IR) injury is one of the most common acute kidney injuries, but there is still a lack of effective treatment in the clinical setting. Trehalose (Tre), a natural disaccharide, has been demonstrated to protect against oxidative stress, inflammation, and apoptosis. However, whether it could protect against IR-induced renal injury needs to be investigated. In an in vivo experiment, C57BL/6J mice were pretreated with or without Tre (2 g/kg) through a daily single intraperitoneal injection from 3 days before renal IR surgery. Renal function, apoptosis, oxidative stress, and inflammation were analyzed to evaluate kidney injury. In an in vitro experiment, mouse proximal tubular cells were treated with or without Tre under a hypoxia/reoxygenation condition. Western blot analysis, autophagy flux detection, and apoptosis assay were performed to evaluate the level of autophagy and antiapoptotic effect of Tre. The in vivo results showed that the renal damage induced by IR was ameliorated by Tre treatment, as renal histology and renal function were improved and the enhanced protein levels of kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin were blocked. Moreover, autophagy was activated by Tre pretreatment along with inhibition of the IR injury-induced apoptosis, oxidative stress, and inflammation. The in vitro results showed that Tre treatment activated autophagy and protected against hypoxia/reoxygenation-induced tubular cell apoptosis and oxidative stress. Our results demonstrated that Tre protects against IR-induced renal injury, possibly by enhancing autophagy and blocking oxidative stress, inflammation, and apoptosis, suggesting its potential use for the clinical treatment of renal IR injury.


Assuntos
Injúria Renal Aguda/prevenção & controle , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Autofagia/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Rim/efeitos dos fármacos , Nefrite/prevenção & controle , Estresse Oxidativo/efeitos dos fármacos , Traumatismo por Reperfusão/prevenção & controle , Trealose/farmacologia , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Animais , Apoptose/efeitos dos fármacos , Biomarcadores/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Rim/metabolismo , Rim/patologia , Masculino , Camundongos Endogâmicos C57BL , Nefrite/metabolismo , Nefrite/patologia , Infiltração de Neutrófilos/efeitos dos fármacos , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Transdução de Sinais
5.
Free Radic Biol Med ; 152: 821-837, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32004633

RESUMO

Mitochondrial dysfunction plays an important role in acute kidney injury (AKI). Thus, the agents improving the mitochondrial function could be beneficial for treating AKI. Ursodeoxycholic acid (UDCA) has been demonstrated to prevent mitochondrial dysfunction under pathology, however, its role in AKI and the underlying mechanism remain unknown. This study aimed to evaluate the effect of UDCA on cisplatin-induced AKI. In vivo, C57BL/6 J mice were treated with cisplatin (25 mg/kg) for 72 h to induce AKI through a single intraperitoneal (i.p.) injection with or without UDCA (60 mg/kg/day) administration by gavage. Renal function, mitochondrial function and oxidative stress were analyzed to evaluate kidney injury. In vitro, mouse proximal tubular cells (mPTCs) and human proximal tubule epithelial cells (HK2) were treated with cisplatin with or without UDCA treatment for 24 h. Transcriptomic RNA-seq was preformed to analyze possible targets of UDCA. Our results showed that cisplatin-induced increments of serum creatinine (Scr), blood urea nitrogen (BUN), and cystatin C were significantly reduced by UDCA along with ameliorated renal tubular injury evidenced by improved renal histology and blocked upregulation of neutrophil gelatinase associated lipocalin (NGAL) and kidney injury molecule 1 (KIM-1). Meanwhile, the apoptosis induced by cisplatin was also markedly attenuated by UDCA administration. In vitro, UDCA treatment protected against tubular cell apoptosis possibly through antagonizing mitochondrial dysfunction and oxidative stress by targeting ALDH1L2 which was screened out by an RNA-seq analysis. Knockout of ALDH1L2 by CRISPR/Cas9 greatly blunted the protective effects of UDCA in renal tubular cells. Moreover, UDCA did not diminish cisplatin's antineoplastic effect in human cancer cells. In all, our results demonstrated that UDCA protects against cisplatin-induced AKI through improving mitochondrial function through acting on the expression of ALDH1L2, suggesting a clinical potential of UDCA for the treatment of AKI.


Assuntos
Injúria Renal Aguda , Cisplatino , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/genética , Animais , Apoptose , Cisplatino/toxicidade , Rim/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias , Ácido Ursodesoxicólico/metabolismo , Ácido Ursodesoxicólico/farmacologia
6.
Cell Death Dis ; 11(1): 33, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31949127

RESUMO

Hydrogen sulfide (H2S) is now widely considered the third endogenous gasotransmitter and plays critical roles in cancer biological processes. In this study, we demonstrate that 5-(4-hydroxyphenyl)-3H-1,2-dithiole-3-thione (ADT-OH), the most widely used moiety for synthesising slow-releasing H2S donors, induces melanoma cell death in vitro and in vivo. Consistent with previous reports, ADT-OH inhibited IκBɑ degradation, resulting in reduced NF-κB activation and subsequent downregulation of the NF-κB-targeted anti-apoptotic proteins XIAP and Bcl-2. More importantly, we found that ADT-OH suppressed the ubiquitin-induced degradation of FADD by downregulating the expression of MKRN1, an E3 ubiquitin ligase of FADD. In addition, ADT-OH had no significant therapeutic effect on FADD-knockout B16F0 cells or FADD-knockdown A375 cells. Based on these findings, we evaluated the combined effects of ADT-OH treatment and FADD overexpression on melanoma cell death in vivo using a mouse xenograft model. As expected, tumour-specific delivery of FADD through a recombinant Salmonella strain, VNP-FADD, combined with low-dose ADT-OH treatment significantly inhibited tumour growth and induced cancer cell apoptosis. Taken together, our data suggest that ADT-OH is a promising cancer therapeutic drug that warrants further investigation into its potential clinical applications.


Assuntos
Apoptose/efeitos dos fármacos , Carcinogênese/patologia , Proteína de Domínio de Morte Associada a Fas/metabolismo , Sulfeto de Hidrogênio/farmacologia , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Tionas/farmacologia , Regulação para Cima , Animais , Carcinogênese/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Humanos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Proteólise/efeitos dos fármacos , Ribonucleoproteínas/metabolismo , Tionas/química , Ubiquitina/metabolismo , Regulação para Cima/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Int Urol Nephrol ; 51(7): 1207-1218, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31020626

RESUMO

OBJECTIVES: The dysfunction of mitochondrial respiratory chain induced by cisplatin results in overproduction of reactive oxygen species (ROS) which contributes to kidney injury. The current study aimed to evaluate the effect of a mitochondrial electron transport inhibitors of rotenone (mitochondrial complex I inhibitor) and azoxystrobin (mitochondrial complex III inhibitor), in cisplatin-induced kidney injury. METHODS: In vivo, cisplatin was administered to male C57BL/6J mice by a single intraperitoneal (i.p.) injection (20 mg/kg). Then the mice were treated with or without 200 ppm rotenone in food. Mice were sacrificed after cisplatin administration for 72 h. The serum and the kidney tissues were collected for further analysis. In vitro, mouse proximal tubular cells (mPTCs) were treated with cisplatin (5 µg/mL) and rotenone/azoxystrobin for 24 h. Flow cytometry, Western blotting, and TUNEL staining were used to evaluate the cell injury. RESULTS: In vivo, rotenone treatment obviously ameliorated cisplatin-induced renal tubular injury evidenced by the improved histology and blocked NGAL upregulation. Meanwhile, cisplatin-induced renal dysfunction shown by the increased levels of serum creatinine (Scr), blood urea nitrogen (BUN), and cystatin C were significantly reduced by rotenone treatment. Moreover, the increments of cleaved caspase-3 and transferase dUTP nick-end labeling (TUNEL)-positive cells were markedly decreased in line with the attenuated mitochondrial dysfunction and oxidative stress after rotenone administration. In vitro, rotenone and azoxystrobin protected against mitochondrial dysfunction, oxidative stress, and renal tubular cell apoptosis induced by cisplatin. CONCLUSIONS: Our results demonstrated that inhibition of mitochondrial activity significantly attenuated cisplatin nephrotoxicity possibly by inhibiting mitochondrial oxidative stress.


Assuntos
Injúria Renal Aguda , Cisplatino/farmacologia , Mitocôndrias , Pirimidinas/farmacologia , Rotenona/farmacologia , Estrobilurinas/farmacologia , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Injúria Renal Aguda/prevenção & controle , Animais , Complexo III da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Rim/metabolismo , Rim/patologia , Testes de Função Renal/métodos , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Resultado do Tratamento , Desacopladores/farmacologia
8.
Clin Sci (Lond) ; 132(7): 825-838, 2018 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-29581249

RESUMO

Renal hypoxia occurs in acute kidney injury (AKI) of various etiologies. Activation of hypoxia-inducible transcription factor (HIF) has been identified as an important mechanism of cellular adaptation to low oxygen. Preconditional HIF activation protects against AKI, suggesting a new approach in AKI treatment. HIF is degraded under normoxic conditions mediated by oxygen-dependent hydroxylation of specific prolyl residues of the regulative α-subunits by HIF prolyl hydroxylases (PHD). FG-4592 is a novel, orally active, small-molecule HIF PHD inhibitor for the treatment of anemia in patients with chronic kidney disease (CKD). The current study aimed to evaluate the effect of FG-4592 (Roxadustat) on cis-diamminedichloroplatinum (cisplatin)-induced kidney injury. In mice, pretreatment with FG-4592 markedly ameliorated cisplatin-induced kidney injury as shown by the improved renal function (blood urea nitrogen (BUN), serum creatinine (Scr), and cystatin C) and kidney morphology (periodic acid-Schiff (PAS) staining) in line with a robust blockade of renal tubular injury markers of kidney injury molecule 1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL). Meanwhile, the renal apoptosis and inflammation induced by cisplatin were also strikingly attenuated in FG-4592-treated mice. Along with the protective effects shown above, FG-4592 pretreatment strongly enhanced HIF-1α in tubular cells, as well as the expressions of HIF target genes. FG-4592 alone did not affect the renal function and morphology in mice. In vitro, FG-4592 treatment significantly up-regulated HIF-1α and protected the tubular cells against cisplatin-induced apoptosis. In summary, FG-4592 treatment remarkably ameliorated the cisplatin-induced kidney injury possibly through the stabilization of HIF. Thus, besides the role in treating CKD anemia, the clinical use of FG-4592 also could be extended to AKI.


Assuntos
Injúria Renal Aguda/prevenção & controle , Antineoplásicos/efeitos adversos , Cisplatino/efeitos adversos , Glicina/análogos & derivados , Prolina Dioxigenases do Fator Induzível por Hipóxia/antagonistas & inibidores , Isoquinolinas/uso terapêutico , Injúria Renal Aguda/induzido quimicamente , Animais , Apoptose/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Glicina/farmacologia , Glicina/uso terapêutico , Isoquinolinas/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Nefrite/prevenção & controle
9.
Am J Transl Res ; 9(3): 1222-1229, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28386348

RESUMO

Cisplatin is one of the most potent cytotoxic drug for the treatment of many types of cancer. However, the side effects on normal tissues, particularly on the kidney, greatly limited its use in clinic. Emerging evidence demonstrated that cisplatin could directly cause mesangial cell apoptosis, while the potential mechanism is still elusive. Here we examined the contribution of COX-2 in cisplatin-induced mesangial cell apoptosis. Firstly, we found cisplatin induced cell apoptosis in mesangial cells shown by increased number of apoptotic cells in parallel with the upregulation of Bax and the downregulation of Bcl-2. Interestingly, cisplatin-induced cell apoptosis was accompanied by an upregulation of COX-2 at both mRNA and protein levels in dose- and time-dependent manners. Importantly, inhibition of COX-2 via a specific COX-2 inhibitor celecoxib markedly blocked cisplatin-induced mesangial cell apoptosis as evidenced by the decreased number of apoptotic cells, blocked increments of cleaved caspase-3 and Bax, and reversed Bcl-2 downregulation. Meanwhile, cisplatin-induced PGE2 production was markedly blocked by the treatment of celecoxib. In conclusion, this study indicated that COX-2/PGE2 cascade activation mediated cisplatin-induced mesangial cell apoptosis. The findings not only offered new insights into the understanding of cisplatin nephrotoxicity but also provided the therapeutic potential by targeting COX-2/PGE2 cascade in treating cisplatin-induced kidney injury.

10.
Environ Res ; 156: 834-842, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28318508

RESUMO

As a replacement for polybrominated diphenyl ethers, bis-(2-ethylhexyl) tetrabromophthalate (TBPH) is widely used as a novel flame retardant and has been detected in many environmental matrix including human blood. TBPH can be metabolized into mono-(2-ethyhexyl) tetrabromophthalate (TBMEHP) by carboxylesterase. However, their adverse effects on human vascular endothelium and their potential impacts on human cardiovascular disease are unknown. In this study, their adverse effects and associated molecular mechanisms on human vascular endothelial cells (HUVECs) were investigated. A concentration-dependent inhibition on HUVECs' viability and growth was observed for TBMEHP but not for TBPH. TBMEHP induced a marked G0/G1 cell cycle arrest and robust cell apoptosis at 1µg/mL by inducing expression of p53, GADD45α and cyclin dependent kinase (CDK) inhibitors (p21and p27) while suppressing the expression of cyclin D1, CDK2, CDK6, and Bcl-2. Unlike TBMEHP, TBPH caused early apoptosis after G2/M phase arrest only at 10µg/mL via up-regulation of p21 and down-regulation of CDK2 and CDK4. TBMEHP decreased mitochondrial membrane potential and increased caspase-3 activity at 1µg/mL, suggesting that activation of p53 and mitochondrial pathway were involved in the cell apoptosis. The data showed that TBPH and TBMEHP induced different cell cycle arrest and apoptosis through different molecular mechanisms with much higher toxicity for TBMEHP. Our study implies that the metabolites of TBPH, possibly other novel brominated flame retardants, may be of potential concern for human cardiovascular disease.


Assuntos
Retardadores de Chama/toxicidade , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Ácidos Ftálicos/toxicidade , Apoptose/efeitos dos fármacos , Caspase 3/genética , Caspase 3/metabolismo , Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/genética , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteínas Nucleares/genética , Medição de Risco , Proteína Supressora de Tumor p53/genética
11.
Sci Rep ; 6: 34178, 2016 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-27767039

RESUMO

Fas-associated protein with death domain (FADD), a pivotal adaptor protein transmitting apoptotic signals, is indispensable for the induction of extrinsic apoptosis. However, overexpression of FADD can form large, filamentous aggregates, termed death effector filaments (DEFs) by self-association and initiate apoptosis independent of receptor cross-linking. A mutant of FADD, which is truncated of the C-terminal tail (m-FADD, 182-205 aa) named N-FADD (m-FADD, 1-181 aa), can dramatically up-regulate the strength of FADD self-association and increase apoptosis. In this study, it was found that over-expression of FADD or N-FADD caused apoptosis of B16F10 cells in vitro, even more, N-FADD showed a more potent apoptotic effect than FADD. Meanwhile, Attenuated Salmonella Typhimurium strain VNP20009 was engineered to express FADD or N-FADD under the control of a hypoxia-induced NirB promoter and each named VNP-pN-FADD and VNP-pN-N-FADD. The results showed both VNP-pN-FADD and VNP-pN-N-FADD delayed tumor growth in B16F10 mice model, while VNP-pN-N-FADD suppressed melanoma growth more significantly than VNP-pN-FADD. Additionally, VNP-pN-FADD and VNP-pN-N-FADD induced apoptosis of tumor cells by activating caspase-dependent apoptotic pathway. Our results show that N-FADD is a more potent apoptotic inducer and VNP20009-mediated targeted expression of N-FADD provides a possible cancer gene therapeutic approach for the treatment of melanoma.


Assuntos
Apoptose , Proteína de Domínio de Morte Associada a Fas , Terapia Genética/métodos , Melanoma , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Proteína de Domínio de Morte Associada a Fas/biossíntese , Proteína de Domínio de Morte Associada a Fas/genética , Feminino , Melanoma/genética , Melanoma/metabolismo , Melanoma/patologia , Melanoma/terapia , Camundongos , Deleção de Sequência
12.
Oncotarget ; 7(17): 24572-84, 2016 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-27013580

RESUMO

FADD (Fas-associated protein with death domain) is a classical adaptor protein in apoptosis. Increasing evidences have shown that FADD is also implicated in cell cycle progression, proliferation and tumorigenesis. The role of FADD in cancer remains largely unexplored. In this study, In Silico Analysis using Oncomine and Kaplan Meier plotter revealed that FADD is significantly up-regulated in breast cancer tissues and closely associated with a poor prognosis in patients with breast cancer. To better understanding the FADD functions in breast cancer, we performed proteomics analysis by LC-MS/MS detection and found that Rheb-mTORC1 pathway was dysregulated in MCF-7 cells when FADD knockdown. The mTORC1 pathway is a key regulator in many processes, including cell growth, metabolism and autophagy. Here, FADD interference down-regulated Rheb expression and repressed mTORC1 activity in breast cancer cell lines. The autophagy was induced by FADD deficiency in MCF7 or MDA-231 cells but rescued by recovering Rheb expression. Similarly, growth defect in FADD-knockdown cells was also restored by Rheb overexpression. These findings implied a novel role of FADD in tumor progression via Rheb-mTORC1 pathway in breast cancer.


Assuntos
Adenocarcinoma/metabolismo , Neoplasias da Mama/metabolismo , Proteína de Domínio de Morte Associada a Fas/metabolismo , Proteína Enriquecida em Homólogo de Ras do Encéfalo/biossíntese , Adenocarcinoma/genética , Adenocarcinoma/patologia , Autofagia/fisiologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Proteína de Domínio de Morte Associada a Fas/deficiência , Proteína de Domínio de Morte Associada a Fas/genética , Feminino , Humanos , Células MCF-7 , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteína Enriquecida em Homólogo de Ras do Encéfalo/genética , Transdução de Sinais
13.
J Autism Dev Disord ; 45(6): 1689-98, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25432101

RESUMO

We conducted a meta-analysis of 15 studies on maternal prenatal smoking and ASD risk in offspring. Using a random-effects model, we found no evidence of an association (summary OR 1.02, 95% CI 0.93-1.12). Stratifying by study design, birth year, type of healthcare system, and adjustment for socioeconomic status or psychiatric history did not alter the findings. There was evidence that ascertaining exposure at the time of birth produced a lower summary OR than when this information was gathered after birth. There was no evidence of publication bias. Non-differential exposure misclassification was shown to have the potential for negligible influence on the results. We found no evidence to support a measurable association between maternal prenatal smoking and ASD in offspring.


Assuntos
Transtorno do Espectro Autista/epidemiologia , Comportamento Materno , Efeitos Tardios da Exposição Pré-Natal/epidemiologia , Fumar/epidemiologia , Transtorno do Espectro Autista/etiologia , Feminino , Humanos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/etiologia , Fumar/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA