Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Rep ; 38: 101676, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38463640

RESUMO

In the tumor microenvironment, transforming growth factor ß (TGF-ß) contributes to neutrophil development toward a pro-tumor phenotype; however, the molecular mechanism by which this occurs remains unclear. Therefore, we explored the role of TGF-ß in N2 neutrophil polarization and the subsequent effect on oral leukoplakia/oral squamous cell carcinoma (OL/OSCC) cells. The TGF-ß-stimulated N2 culture supernatant promoted the proliferation of OL/OSCC cells. Analysis of the N2 supernatant using a cytokine array revealed significantly upregulated expression of soluble forms of receptor for advanced glycation end products (RAGE). TGF-ß was found to induce the expression of RAGE and matrix metalloproteinase 9 (MMP9) in neutrophils. Additionally, MMP9 treatment could cleave RAGE and promote its secretion by neutrophils, thereby promoting cancer cell proliferation. In an established mouse model of oral cancer using 4NQO, RAGE were found to be highly expressed. Importantly, neutralizing antibodies against RAGE significantly inhibited oral cancer progression in mice. Analysis of clinical data from the TCGA database revealed that RAGE and MMP9 are highly expressed in head and neck squamous cell carcinoma (HNSCC) and that RAGE expression is significantly positively correlated with neutrophil infiltration. In conclusion, our results indicate that TGF-ß promotes N2 neutrophil polarization through upregulation of soluble RAGE (sRAGE) secretion, leading to OSCC cell proliferation. Our findings also suggest that the sRAGE formed during N2 polarization may be a potential therapeutic target in OL/OSCC.

2.
J Cancer ; 15(7): 2033-2044, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38434984

RESUMO

Background: It is crucial to probe into the biological effect and mechanism of miRNA-485-5p regulating keratin 17 (KRT17) in pancreatic cancer (PC) to understand its pathogenesis and identify potential biological targets. Methods: The bioinformatics means were used to evaluate the clinical significance of KRT17 expression in the Cancer Genome Atlas (TCGA) database. TargetScan database analysis in conjunction with dual luciferase and RNA Immunoprecipitation (RIP) experiments was used to probe the interaction relationship of miRNA-485-5p with KRT17. The expression of miRNA-485-5p and KRT17 in PC tissue and cancer cell lines was detected by Q-PCR paired with western blot assay. The biological function of miRNA-485-5p in regulating KRT17 was investigated in the PC cell line via gene silencing/overexpression technique. A western blot experiment was utilized to investigate the regulatory effect of KRT17 on cell cycle-related proteins and the FAK/Src/ERK signal pathway. Results: The level of KRT17 was increased in PC tissues and this significantly decreased the survival rate of PC patients. TargetScan in combination with dual luciferase and RIP experiments verified the miRNA-485-5p target KRT17. The expression of KRT17 was high in the PC cell line, although the expression of miRNA-485-5p was low. Silencing KRT17 or overexpression of miRNA-485-5p significantly inhibited PC cell viability, proliferation, invasion, and colony formation, while promoting apoptosis. Overexpression of KRT17 drastically reversed the function of miRNA-485-5p. The silenced KRT17 remarkably downregulated the expression of cyclinD1, Cyclin Dependent Kinase 1 (CDK1), CDK2, Phospho-Focal Adhesion Kinase (p-FAK), p-Src, and p-ERK proteins in the PC cells. Conclusion: Generally, an essential signaling cascade of miRNA-485-5p/KRT17/FAK/Src/ERK influences the biological functions of PC cells.

3.
Transl Cancer Res ; 13(1): 330-347, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38410212

RESUMO

Background: Liver metastasis (Li) is one of the most common distant metastatic sites for gastric cancer. A deeper understanding of its mechanism of action from a bioinformatics perspective may provide new insights. Therefore, the aim of this study was to use single cell RNA sequencing (scRNA-seq) to evaluate cell subtypes and understand the molecular mechanism of gastric cancer Li. Methods: The scRNA-seq data GSE163558 of gastric cancer and Li were downloaded from Gene Expression Omnibus (GEO). Single cell data were analyzed by various R packages such as Seurat, CellChat, gene set variation analysis (GSVA), monocle, gene set enrichment analysis (GSEA), and survival analysis and the results were plotted by ggplot2, R4.1.1. Protein expression was confirmed by immunohistochemistry in an additional patient cohort. Results: The genes APOD, CXCL5, and JUN are involved in epithelial cell metastasis. The infiltration of cytotoxic CD8 T cells was more frequent in gastric primary tumors (PTs) than in Lis. IL7R high natural killer (NK) cells that had high TXNIP and RIPOR2 expression were located at the site of Li and corresponded to a favorable prognosis. NK cells with high TNFAIP3 expression were located at the PT site and corresponded to a poor prognosis. Furthermore, the gene expression of myeloid cells was different depending on their localization in the PT site or Li. MHC-I signaling pathway was found to be activated in the PT compared to MHC-II at the site of Li, as revealed by cell-cell interaction, and HLA-E-CD94/NKG2A of NK cells was only activated in the PT and not in the Li. Conclusions: The present study revealed the difference between Li and gastric PT by scRNA-seq, demonstrating the impact of partial gene expression on patient prognosis. Our study provides new insights into gastric cancer and Li.

4.
Mol Ther ; 30(4): 1564-1577, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35051616

RESUMO

Oral squamous cell carcinoma (OSCC), which is typically preceded by oral leukoplakia (OL), is a common malignancy with poor prognosis. However, the signaling molecules governing this progression remain to be defined. Based on microarray analysis of genes expressed in OL and OSCC samples, we discovered that the long non-coding RNA IFITM4P was highly expressed in OSCC, and ectopic expression or knockdown of IFITM4P resulted in increased or decreased cell proliferation in vitro and in xenografted tumors, respectively. Mechanistically, in the cytoplasm IFITM4P acted as a scaffold to facilitate recruiting SASH1 to bind and phosphorylate TAK1 (Thr187), and in turn to increase the phosphorylation of nuclear factor κB (Ser536) and concomitant induction of PD-L1 expression, resulting in activation of an immunosuppressive program that allows OL cells to escape anti-cancer immunity in cytoplasm. In nucleus, IFITM4P reduced Pten transcription by enhancing the binding of KDM5A to the Pten promoter, thereby upregulating PD-L1 in OL cells. Moreover, mice bearing tumors with high IFITM4P expression had notable therapeutic sensitivity to PD-1 monoclonal antibody (mAb) treatment. Collectively, these data demonstrate that IFITM4P may serve as a new therapeutic target in blockage of oral carcinogenesis, and PD-1 mAb can be an effective reagent to treat OSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Bucais , RNA Longo não Codificante , Animais , Anticorpos Monoclonais , Antígeno B7-H1/metabolismo , Carcinogênese/genética , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Camundongos , Neoplasias Bucais/genética , Neoplasias Bucais/metabolismo , Receptor de Morte Celular Programada 1 , RNA Longo não Codificante/genética
5.
Toxicol Appl Pharmacol ; 435: 115829, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34919946

RESUMO

Type I co-activator-associated arginine methyltransferase 1 (CARM1) and type II protein arginine methyltransferase 5 (PRMT5) are highly expressed in multiple cancers including liver cancer and their overexpression contributes to poor prognosis, thus making them promising therapeutic targets. Here, we evaluated anti-tumor activity of ribavirin in hepatocellular carcinoma (HCC). We found that ribavirin significantly inhibited the proliferation of HCC cells in a time- and dose-dependent manner. Furthermore, ribavirin suppressed the growth of subcutaneous and orthotopic xenograft of HCC in mice, decreased vascular endothelial growth factor (VEGF) and peritoneal permeability to reduce ascites production, and prolonged the survival of mice in HCC ascites tumor models. Mechanistically, ribavirin potently down-regulated global protein expression of CARM1 and PRMT5, and concurrently decreased accumulation of H3R17me2a and H3R8me2s/H4R3me2s. However, ribavirin did not affect the activity and mRNA levels of both CARM1 and PRMT5 in vivo and in vitro HCC cells. In addition, our ChIP results shown that ribavirin inhibited CARM1 which in turn decreased the H3R17me2a, binds to the eukaryotic translation initiation factor 4E (eIF4E) and VEGF promoter region, and reduced the relative mRNA expression level of eIF4E and VEGF in HCC cells. Our findings suggested a potential therapeutic strategy for patients with HCC through inhibition of the abnormal activation/expression of both CARM1 and PRMT5.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Ascite/tratamento farmacológico , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Ribavirina/farmacologia , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Fator de Iniciação 4E em Eucariotos/biossíntese , Fator de Iniciação 4E em Eucariotos/genética , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Camundongos , Proteína-Arginina N-Metiltransferases/genética , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/genética , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Theranostics ; 11(15): 7379-7390, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34158856

RESUMO

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a novel strain of highly contagious coronaviruses that infects humans. Prolonged fever, particularly that above 39.5 °C, is associated with SARS-CoV-2 infection. However, little is known about the pathological effects of fever caused by SARS-CoV-2. Methods: Primary bovine alveolar macrophages (PBAMs), RAW264.7 mouse macrophages, and THP-1 human cells were transfected with plasmids carrying the genes encoding the SARS-CoV-2 spike (S) protein or receptor-binding domain (RBD). Proteins in the macrophages interacting with S-RBD at 39.5 °C or 37 °C were identified by immunoprecipitation-mass spectrometry. Glutathione S-transferase pulldown, surface plasmon resonance, and immunofluorescence were performed to evaluate the transient receptor potential vanilloid 2 (TRPV2) interaction with SARS-CoV-2-S-RBD at 39.5 °C. Using an RNA sequencing-based approach, cytokine gene expression induced by SARS-CoV-2 S transfection at 39.5 °C and 37.5 °C in primary alveolar macrophages was measured. Fluo-4 staining and enzyme-linked immunosorbent assays were used to assess the regulatory function of TRPV2 in intracellular Ca 2+ and cytokines under SARS-CoV-2-S-RBD at 39.5 °C. Additionally, cytokine release was examined after TRPV2 knockdown with shRNA oligonucleotides or inhibition using the SKF-96365 antagonist. Results: We identified an interaction between the primary alveolar macrophage receptor TRPV2 and S-RBD under febrile conditions. Febrile temperature promotes Ca2+ influx through SARS-CoV-2 infection in PBAMs, further activates the NF-κB p65 signaling pathway, and enhances the secretion of cytokines. Furthermore, knockdown or antagonist (with SKF-96365) of TRPV2 significantly decreased the release of cytokines that drive the inflammatory response. Conclusion: Collectively, our findings identified TRPV2 as a receptor of SARS-CoV-2 in conditions of febrile temperature, providing insight into critical interactions of SARS-CoV-2 with macrophages, as well as a useful resource and potential drug target for coronavirus disease 2019.


Assuntos
COVID-19/virologia , Febre/virologia , Macrófagos/metabolismo , Macrófagos/virologia , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Canais de Cátion TRPV/metabolismo , Internalização do Vírus , Animais , Cálcio/metabolismo , Bovinos , Células Cultivadas , Citocinas/metabolismo , Humanos , Imidazóis/farmacologia , Cinética , Macrófagos/efeitos dos fármacos , Camundongos , NF-kappa B/metabolismo , Ligação Proteica/efeitos dos fármacos , Células RAW 264.7 , SARS-CoV-2/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Células THP-1 , Temperatura , Internalização do Vírus/efeitos dos fármacos
7.
EMBO Rep ; 22(8): e51780, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34184805

RESUMO

Snail is a dedicated transcriptional repressor and acts as a master inducer of EMT and metastasis, yet the underlying signaling cascades triggered by Snail still remain elusive. Here, we report that Snail promotes colorectal cancer (CRC) migration by preventing non-coding RNA LOC113230-mediated degradation of argininosuccinate synthase 1 (ASS1). LOC113230 is a novel Snail target gene, and Snail binds to the functional E-boxes within its proximal promoter to repress its expression in response to TGF-ß induction. Ectopic expression of LOC113230 potently suppresses CRC cell growth, migration, and lung metastasis in xenograft experiments. Mechanistically, LOC113230 acts as a scaffold to facilitate recruiting LRPPRC and the TRAF2 E3 ubiquitin ligase to ASS1, resulting in enhanced ubiquitination and degradation of ASS1 and decreased arginine synthesis. Moreover, elevated ASS1 expression is essential for CRC growth and migration. Collectively, these findings suggest that TGF-ß and Snail promote arginine synthesis via inhibiting LOC113230-mediated LRPPRC/TRAF2/ASS1 complex assembly and this complex can serve as potential target for the development of new therapeutic approaches to treat CRC.


Assuntos
Argininossuccinato Sintase , Transição Epitelial-Mesenquimal , Arginina , Linhagem Celular Tumoral , Movimento Celular/genética , Transição Epitelial-Mesenquimal/genética , Fatores de Transcrição da Família Snail/genética , Fatores de Transcrição da Família Snail/metabolismo , Ubiquitinação
8.
Life Sci ; 224: 41-50, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30902543

RESUMO

Common characteristics of drug induced nephrotoxicity are renal tubular and interstitial injury. Many studies have only focused on renal tubular injury. However, less is known about the effects of drugs in the renal interstitium on the nephrotoxicity. The aim of this study was to investigate the pharmacokinetics of adefovir (ADV) and the nephrotoxicity in the renal interstitium. Rats were treated with ADV alone or in combination with probenecid for 1, 7, 14, or 28 days. The renal interstitial fluid was collected by renal microdialysis. The concentration of ADV was determined by HPLC-MS/MS. Nephrotoxicity was evaluated by biochemical parameters or histological analysis. The results showed that organic anion transporters (OATs) inhibitor probenecid significantly increased the area under concentration-time curves (AUC) and peak concentration (Cmax) of ADV in the renal interstitium, while the clearance (CL) in the renal interstitium was decreased in the ADV plus probenecid group compared to the ADV groups. After long-term treatment, interstitial fibrosis was present in the ADV plus probenecid group, whereas no trace of that could be detected in the ADV groups. Furthermore, a decrease was observed in the expression of OATs/Oats, which was dependent upon the concentrations and time of ADV treatment. In conclusion, it is possible that ADV could be accumulated in the interstitium when Oats were inhibited, which could cause renal interstitial fibrosis. Simply reducing cell uptake in long-term treatment might not be an effective method to protect against chronic nephrotoxicity.


Assuntos
Adenina/análogos & derivados , Nefropatias/induzido quimicamente , Túbulos Renais/patologia , Transportadores de Ânions Orgânicos/metabolismo , Organofosfonatos/farmacocinética , Organofosfonatos/toxicidade , Adenina/farmacocinética , Adenina/toxicidade , Animais , Antivirais/farmacocinética , Antivirais/toxicidade , Nefropatias/metabolismo , Nefropatias/patologia , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/metabolismo , Ratos , Ratos Wistar , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA