Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Invest Ophthalmol Vis Sci ; 64(2): 5, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36729443

RESUMO

Purpose: The purpose of this study was to describe genotype-phenotype associations and novel insights into genetic characteristics in a trio-based cohort of inherited eye diseases (IEDs). Methods: To determine the etiological role of de novo mutations (DNMs) and genetic profile in IEDs, we retrospectively reviewed a large cohort of proband-parent trios of Chinese origin. The patients underwent a detailed examination and was clinically diagnosed by an ophthalmologist. Panel-based targeted exome sequencing was performed on DNA extracted from blood samples, containing coding regions of 792 IED-causative genes and their flanking exons. All participants underwent genetic testing. Results: All proband-parent trios were divided into 22 subgroups, the overall diagnostic yield was 48.67% (605/1243), ranging from 4% to 94.44% for each of the subgroups. A total of 108 IED-causative genes were identified, with the top 24 genes explaining 67% of the 605 genetically solved trios. The genetic etiology of 6.76% (84/1243) of the trio was attributed to disease-causative DNMs, and the top 3 subgroups with the highest incidence of DNM were aniridia (n = 40%), Marfan syndrome/ectopia lentis (n = 38.78%), and retinoblastoma (n = 37.04%). The top 10 genes have a diagnostic yield of DNM greater than 3.5% in their subgroups, including PAX6 (40.00%), FBN1 (38.78%), RB1 (37.04%), CRX (10.34%), CHM (9.09%), WFS1 (8.00%), RP1L1 (5.88%), RS1 (5.26%), PCDH15 (4.00%), and ABCA4 (3.51%). Additionally, the incidence of DNM in offspring showed a trend of correlation with paternal age at reproduction, but not statistically significant with paternal (P = 0.154) and maternal (P = 0.959) age at reproduction. Conclusions: Trios-based genetic analysis has high accuracy and validity. Our study helps to quantify the burden of the full spectrum IED caused by each gene, offers novel potential for elucidating etiology, and plays a crucial role in genetic counseling and patient management.


Assuntos
Oftalmopatias , Testes Genéticos , Humanos , Virulência , Estudos Retrospectivos , Mutação , Linhagem , Transportadores de Cassetes de Ligação de ATP/genética , Proteínas do Olho/genética
2.
J Biol Chem ; 298(6): 102017, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35526564

RESUMO

Jumonji domain-containing 3 (JMJD3/KDM6B) is a histone demethylase that plays an important role in regulating development, differentiation, immunity, and tumorigenesis. However, the mechanisms responsible for the epigenetic regulation of inflammation during mastitis remain incompletely understood. Here, we aimed to investigate the role of JMJD3 in the lipopolysaccharide (LPS)-induced mastitis model. GSK-J1, a small molecule inhibitor of JMJD3, was applied to treat LPS-induced mastitis in mice and in mouse mammary epithelial cells in vivo and in vitro. Breast tissues were then collected for histopathology and protein/gene expression examination, and mouse mammary epithelial cells were used to investigate the mechanism of regulation of the inflammatory response. We found that the JMJD3 gene and protein expression were upregulated in injured mammary glands during mastitis. Unexpectedly, we also found JMJD3 inhibition by GSK-J1 significantly alleviated the severity of inflammation in LPS-induced mastitis. These results are in agreement with the finding that GSK-J1 treatment led to the recruitment of histone 3 lysine 27 trimethylation (H3K27me3), an inhibitory chromatin mark, in vitro. Furthermore, mechanistic investigation suggested that GSK-J1 treatment directly interfered with the transcription of inflammatory-related genes by H3K27me3 modification of their promoters. Meanwhile, we also demonstrated that JMJD3 depletion or inhibition by GSK-J1 decreased the expression of toll-like receptor 4 and negated downstream NF-κB proinflammatory signaling and subsequently reduced LPS-stimulated upregulation of Tnfa, Il1b, and Il6. Together, we propose that targeting JMJD3 has therapeutic potential for the treatment of inflammatory diseases.


Assuntos
Inibidores Enzimáticos , Histona Desmetilases com o Domínio Jumonji , Mastite , Animais , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Epigênese Genética , Células Epiteliais , Feminino , Histonas/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Histona Desmetilases com o Domínio Jumonji/antagonistas & inibidores , Lipopolissacarídeos , Glândulas Mamárias Animais/citologia , Mastite/induzido quimicamente , Mastite/tratamento farmacológico , Camundongos
3.
J Agric Food Chem ; 67(16): 4588-4594, 2019 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-30939243

RESUMO

Zearalenone (ZEA) is a non-steroidal estrogenic mycotoxin synthesized in Fusarium species, mainly Fusarium graminearum and Fusarium culmorum, and it has strong estrogenic activity and causes genotoxic effects, reproductive disorders, and immunosuppressive effects. Neutrophil extracellular trap (NET) has been studied for many years. Initially, NET was considered a form of the innate response that combats invading microorganisms. However, NET is involved in a series of pathophysiological mechanisms, including thrombosis, tissue necrosis, autoinflammation, and even autoimmunity. We recently found that polymorphonuclear neutrophils response to ZEA exposure by undergoing NET formation. However, the molecular mechanisms involved in this process remain poorly characterized. Here, we analyze whether estrogen receptors (ERs) can affect NET formation after ZEA stimulation. The involvement of ERs is investigated with the selective ER antagonists. Moreover, we investigate the mechanisms of NET formation using immunofluorescence staining, fluorescence microplate, and western blot analysis. Our results show that ERs (ERα and ERß) are not involved in ZEA-induced NET formation, but reactive oxygen species (ROS), extracellular signal-regulated kinase (ERK), and p38 are postulated to be involved. Specifically, we provide data demonstrating that ZEA-induced ROS may promote activation of ERK and p38 as well as subsequent NET release. We are the first to demonstrate this new mechanism of ZEA-induced NET formation, which may help in understanding the role of ZEA in overexposure diseases and provide a relevant basis for therapeutic applications.


Assuntos
Armadilhas Extracelulares/efeitos dos fármacos , Receptores de Estrogênio/metabolismo , Zearalenona/farmacologia , Animais , Bovinos , Células Cultivadas , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Armadilhas Extracelulares/metabolismo , Técnicas In Vitro , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores de Estrogênio/genética
4.
Br J Pharmacol ; 174(21): 3811-3822, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28800679

RESUMO

BACKGROUND AND PURPOSE: Short-chain fatty acids are fermentation end products produced by gut bacteria, which have been shown to ameliorate inflammatory bowel diseases and allergic asthma. However, the mechanism involved remains largely unknown. Here, we investigate the protective effects and mechanisms of sodium butyrate (SB) on LPS-induced mastitis model. EXPERIMENTAL APPROACH: Effects of increasing doses of SB on blood-milk barrier function and inflammation are studied in BALB/c mice with LPS-induced mastitis. The underlying mechanisms of anti-inflammatory effects of SB were further investigated in LPS-stimulated mouse mammary epithelial cells (mMECs). KEY RESULTS: The results show that SB decreased LPS-induced disruption in mammary tissues, infiltration of inflammatory cells and the levels of TNF-α, IL-6 and IL-1ß. SB up-regulated the tight junction proteins occludin and claudin-3 and reduced blood-milk barrier permeability in LPS-induced mastitis. Studies in vitro revealed that SB inhibited LPS-induced inflammatory response by inhibition of the NF-κB signalling pathway and histone deacetylases in LPS-stimulated mMECs. CONCLUSIONS AND IMPLICATIONS: In our model, SB protected against LPS-induced mastitis by preserving blood-milk barrier function and depressing pro-inflammatory responses, suggesting the potential use of SB as a prophylactic agent to protect blood-milk barrier function in mastitis.


Assuntos
Ácido Butírico/farmacologia , Inflamação/prevenção & controle , Mastite/prevenção & controle , Leite/metabolismo , Animais , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Feminino , Inflamação/patologia , Lipopolissacarídeos/toxicidade , Mastite/patologia , Camundongos , Camundongos Endogâmicos BALB C , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA