Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.681
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Cancer Immunol Immunother ; 73(7): 132, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753055

RESUMO

BACKGROUND: Immune checkpoint inhibitors (ICIs) combined with chemotherapy have become the first-line treatment of metastatic gastric and gastroesophageal adenocarcinomas (GEACs). This study aims to figure out the optimal combined positive score (CPS) cutoff value. METHODS: We searched for randomized phase III trials to investigate the efficacy of ICIs plus chemotherapy for metastatic GEACs compared with chemotherapy alone. Pooled analyses of hazard ratios (HRs) based on PD-L1 expression were performed. RESULTS: A total of six trials (KEYNOTE-062, KEYNOTE-590, KEYNOTE-859, ATTRACTION-04, CheckMate 649, and ORIENT-16) were included, comprising 5,242 patients. ICIs plus chemotherapy significantly improved OS (HR: 0.79, 95% CI 0.72-0.86 in global patients; HR: 0.75, 95% CI 0.57-0.98 in Asian patients) and PFS (HR: 0.74, 95% CI 0.68-0.82 in global patients; HR: 0.64, 95% CI 0.56-0.73 in Asian patients) compared with chemotherapy alone. The differences in OS (ratio of HR: 1.05, 95% CI 0.79-1.40; predictive value: - 5.1%) and PFS (ratio of HR: 1.16, 95% CI 0.98-1.36; predictive value: - 13.5%) were not statistically significant between the global and Asian patients. Subgroup analyses indicated that the optimal CPS threshold was at ≥ 5 for OS and ≥ 10 for PFS with the highest predictive values. CONCLUSIONS: The benefit derived from ICIs plus chemotherapy is similar between Asian and global GEAC patients. However, those with a PD-L1 CPS < 5 or CPS < 10 may not have significant benefits from ICIs therapy. Therefore, it is advisable to routinely assess PD-L1 expression in GEAC patients considered for ICIs treatment.


Assuntos
Adenocarcinoma , Protocolos de Quimioterapia Combinada Antineoplásica , Antígeno B7-H1 , Inibidores de Checkpoint Imunológico , Receptor ErbB-2 , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/mortalidade , Antígeno B7-H1/metabolismo , Antígeno B7-H1/antagonistas & inibidores , Inibidores de Checkpoint Imunológico/uso terapêutico , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/metabolismo , Adenocarcinoma/mortalidade , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Receptor ErbB-2/metabolismo , Prognóstico , Ensaios Clínicos Controlados Aleatórios como Assunto , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Ensaios Clínicos Fase III como Assunto , Biomarcadores Tumorais/metabolismo
2.
J Nucl Med ; 65(Suppl 1): 38S-45S, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38719241

RESUMO

Radiopharmaceuticals play a critical role in nuclear medicine, providing novel tools for specifically delivering radioisotopes for the diagnosis and treatment of cancers. As the starting point for developing radiopharmaceuticals, cancer-specific biomarkers are important and receive worldwide attention. This field in China is currently experiencing a rapid expansion, with multiple radiotracers targeting novel targets being developed and translated into clinical studies. This review provides a brief overview of the exploration of novel imaging targets, preclinical evaluation of their targeting ligands, and translational research in China from 2020 to 2023, for detecting cancer, guiding targeted therapy, and visualizing the immune microenvironment. We believe that China will play an even more important role in the development of nuclear medicine in the world in the future.


Assuntos
Biomarcadores Tumorais , Neoplasias , Traçadores Radioativos , Humanos , China , Biomarcadores Tumorais/metabolismo , Neoplasias/diagnóstico por imagem , Neoplasias/radioterapia , Compostos Radiofarmacêuticos , Animais
3.
J Ethnopharmacol ; 330: 118264, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38692417

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Optimized New Shengmai Powder (ONSMP) is a sophisticated traditional Chinese medicinal formula renowned for bolstering vital energy, optimizing blood circulation, and mitigating fluid retention. After years of clinical application, ONSMP has shown a significant impact in improving myocardial injury and cardiac function and has a positive effect on treating heart failure. However, many unknowns exist about the molecular biological mechanisms of how ONSMP exerts its therapeutic effects, which require further research and exploration. AIM OF THE STUDY: Exploring the potential molecular biological mechanisms by which ONSMP ameliorates cardiomyocyte apoptosis and ferroptosis in ischemic heart failure (IHF). MATERIALS AND METHODS: First, we constructed a rat model of IHF by inducing acute myocardial infarction through surgery and using echocardiography, organ coefficients, markers of heart failure, antioxidant markers, and histopathological examination to assess the effects of ONSMP on cardiomyocyte apoptosis and ferroptosis in IHF rats. Next, we used bioinformatics analysis techniques to analyze the active components, signaling pathways, and core targets of ONSMP and calculated the interactions between core targets and corresponding elements. Finally, we detected the positive expression of apoptosis and ferroptosis markers and core indicators of signaling pathways by immunohistochemistry; detected the mean fluorescence intensity of core indicators of signaling pathways by immunofluorescence; detected the protein expression of signaling pathways and downstream effector molecules by western blotting; and detected the mRNA levels of p53 and downstream effector molecules by quantitative polymerase chain reaction. RESULTS: ONSMP can activate the Ser83 site of ASK by promoting the phosphorylation of the PI3K/AKT axis, thereby inhibiting the MKK3/6-p38 axis and the MKK4/7-JNK axis signaling to reduce p53 expression, and can also directly target and inhibit the activity of p53, ultimately inhibiting p53-mediated mRNA and protein increases in PUMA, SAT1, PIG3, and TFR1, as well as mRNA and protein decreases in SLC7A11, thereby inhibiting cardiomyocyte apoptosis and ferroptosis, effectively improving cardiac function and ventricular remodeling in IHF rat models. CONCLUSION: ONSMP can inhibit cardiomyocyte apoptosis and ferroptosis through the PI3K/AKT/p53 signaling pathway, delaying the development of IHF.


Assuntos
Apoptose , Combinação de Medicamentos , Medicamentos de Ervas Chinesas , Ferroptose , Insuficiência Cardíaca , Miócitos Cardíacos , Proteínas Proto-Oncogênicas c-akt , Ratos Sprague-Dawley , Transdução de Sinais , Proteína Supressora de Tumor p53 , Animais , Ferroptose/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Insuficiência Cardíaca/tratamento farmacológico , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Apoptose/efeitos dos fármacos , Masculino , Transdução de Sinais/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Ratos , Fosfatidilinositol 3-Quinase/metabolismo , Isquemia Miocárdica/tratamento farmacológico , Modelos Animais de Doenças , Pós
4.
Nature ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778111

RESUMO

Targeted radionuclide therapy, in which radiopharmaceuticals deliver potent radionuclides to tumours for localized irradiation, has addressed unmet clinical needs and improved outcomes for patients with cancer1-4. A therapeutic radiopharmaceutical must achieve both sustainable tumour targeting and fast clearance from healthy tissue, which remains a major challenge5,6. A targeted ligation strategy that selectively fixes the radiopharmaceutical to the target protein in the tumour would be an ideal solution. Here we installed a sulfur (VI) fluoride exchange (SuFEx) chemistry-based linker on radiopharmaceuticals to prevent excessively fast tumour clearance. When the engineered radiopharmaceutical binds to the tumour-specific protein, the system undergoes a binding-to-ligation transition and readily conjugates to the tyrosine residues through the 'click' SuFEx reaction. The application of this strategy to a fibroblast activation protein (FAP) inhibitor (FAPI) triggered more than 80% covalent binding to the protein and almost no dissociation for six days. In mice, SuFEx-engineered FAPI showed 257% greater tumour uptake than did the original FAPI, and increased tumour retention by 13-fold. The uptake in healthy tissues was rapidly cleared. In a pilot imaging study, this strategy identified more tumour lesions in patients with cancer than did other methods. SuFEx-engineered FAPI also successfully achieved targeted ß- and α-radionuclide therapy, causing nearly complete tumour regression in mice. Another SuFEx-engineered radioligand that targets prostate-specific membrane antigen (PSMA) also showed enhanced therapeutic efficacy. Considering the broad scope of proteins that can potentially be ligated to SuFEx warheads, it might be possible to adapt this strategy to other cancer targets.

5.
J Hepatol ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38759889

RESUMO

BACKGROUND & AIMS: The liver is the main organ of ketogenesis, while ketones are mainly metabolized in peripheral tissues via the critical enzyme OXCT1. We previously found that ketolysis is reactivated in hepatocellular carcinoma (HCC) cells through OXCT1 expression to promote tumor progression; however, whether OXCT1 regulates antitumor immunity remains unclear. METHODS: To investigate the expression pattern of OXCT1 in hepatocellular carcinoma in vivo, we conducted multiplex immunohistochemistry (mIHC) experiments on human HCC specimens. To explore the role of OXCT1 in mouse hepatocellular carcinoma tumor-associated macrophages (TAMs), we generated LysMcreOXCT1f/f (OXCT1 conditional knockout in macrophages) mice. RESULTS: Here, we found that inhibiting OXCT1 expression in tumor-associated macrophages reduced CD8+ T-cell exhaustion through the succinate-H3K4me3-Arg1 axis. Initially, we found that OXCT1 was highly expressed in liver macrophages under steady state and that OXCT expression was further increased in TAMs. OXCT1 deficiency in macrophages suppressed tumor growth by reprogramming TAMs toward an antitumor phenotype, reducing CD8+ T-cell exhaustion and increasing CD8+ T-cell cytotoxicity. Mechanistically, high OXCT1 expression induced the accumulation of succinate, a byproduct of ketolysis, in TAMs, which promoted Arg1 transcription by increasing the H3K4 trimethylation (H3K4me3) level in the Arg1 promoter. In addition, Pimozide, an inhibitor of OXCT1, suppressed Arg1 expression as well as TAM polarization toward the protumor phenotype, leading to decreasing CD8+ T-cell exhaustion and deceleration of tumor growth. Finally, high expression of OXCT1 in macrophages was positively associated with poor survival in HCC patients. CONCLUSIONS: In conclusion, our results demonstrate that OXCT1 epigenetically suppresses antitumor immunity, suggesting that suppressing OXCT1 activity in TAMs is an effective approach for treating liver cancer. IMPACT AND IMPLICATIONS: The intricate metabolism of liver macrophages plays a critical role in shaping HCC progression and immune modulation. Targeting macrophage metabolism to counteract immune suppression presents a promising avenue for HCC. Here, we found that ketogenesis gene OXCT1 was highly expressed in tumor-associated macrophages and promoted tumor growth by reprogramming TAMs toward a protumor phenotype. And the strategic pharmacological intervention or genetic downregulation of OXCT1 in TAMs enhances the antitumor immunity and decelerated tumor growth. Our results suggest that suppressing OXCT1 activity in TAMs is an effective approach for treating liver cancer.

6.
J Nucl Med ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38604764

RESUMO

68Ga-labeled nanobody (68Ga-NC-BCH) is a single-domain antibody-based PET imaging agent. We conducted a first-in-humans study of 68Ga-NC-BCH for PET to determine its in vivo biodistribution, metabolism, radiation dosimetry, safety, and potential for quantifying claudin-18 isoform 2 (CLDN18.2) expression in gastrointestinal cancer patients. Methods: Initially, we synthesized the probe 68Ga-NC-BCH and performed preclinical evaluations on human gastric adenocarcinoma cell lines and xenograft mouse models. Next, we performed a translational study with a pilot cohort of patients with advanced gastrointestinal cancer on a total-body PET/CT scanner. Radiopharmaceutical biodistribution, radiation dosimetry, and the relationship between tumor uptake and CLDN18.2 expression were evaluated. Results: 68Ga-NC-BCH was stably prepared and demonstrated good radiochemical properties. According to preclinical evaluation,68Ga-NC-BCH exhibited rapid blood clearance, high affinity for CLDN18.2, and high specific uptake in CLDN18.2-positive cells and xenograft mouse models. 68Ga-NC-BCH displayed high uptake in the stomach and kidney and slight uptake in the pancreas. Compared with 18F-FDG, 68Ga-NC-BCH showed significant differences in uptake in lesions with different levels of CLDN18.2 expression. Conclusion: A clear correlation was detected between PET SUV and CLDN18.2 expression, suggesting that 68Ga-NC-BCH PET could be used as a companion diagnostic tool for optimizing treatments that target CLDN18.2 in tumors.

7.
Biomed Phys Eng Express ; 10(3)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38588648

RESUMO

Objective. Ultrasound-assisted orthopaedic navigation held promise due to its non-ionizing feature, portability, low cost, and real-time performance. To facilitate the applications, it was critical to have accurate and real-time bone surface segmentation. Nevertheless, the imaging artifacts and low signal-to-noise ratios in the tomographical B-mode ultrasound (B-US) images created substantial challenges in bone surface detection. In this study, we presented an end-to-end lightweight US bone segmentation network (UBS-Net) for bone surface detection.Approach. We presented an end-to-end lightweight UBS-Net for bone surface detection, using the U-Net structure as the base framework and a level set loss function for improved sensitivity to bone surface detectability. A dual attention (DA) mechanism was introduced at the end of the encoder, which considered both position and channel information to obtain the correlation between the position and channel dimensions of the feature map, where axial attention (AA) replaced the traditional self-attention (SA) mechanism in the position attention module for better computational efficiency. The position attention and channel attention (CA) were combined with a two-class fusion module for the DA map. The decoding module finally completed the bone surface detection.Main Results. As a result, a frame rate of 21 frames per second (fps) in detection were achieved. It outperformed the state-of-the-art method with higher segmentation accuracy (Dice similarity coefficient: 88.76% versus 87.22%) when applied the retrospective ultrasound (US) data from 11 volunteers.Significance. The proposed UBS-Net for bone surface detection in ultrasound achieved outstanding accuracy and real-time performance. The new method out-performed the state-of-the-art methods. It had potential in US-guided orthopaedic surgery applications.


Assuntos
Processamento de Imagem Assistida por Computador , Razão Sinal-Ruído , Ultrassonografia , Humanos , Ultrassonografia/métodos , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Osso e Ossos/diagnóstico por imagem , Redes Neurais de Computação
8.
J Thorac Dis ; 16(3): 2032-2048, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38617757

RESUMO

Background: Esophageal fistula (EF) is a serious adverse event as a result of radiotherapy in patients with esophageal cancer (EC). We aimed to identify the predictive factors and establish a prediction model of EF in patients with esophageal squamous cell carcinoma (ESCC) who underwent intensity-modulated radiation therapy (IMRT) or volumetric-modulated arc therapy (VMAT). Methods: Patients with ESCC treated with IMRT or VMAT from January 2013 to December 2020 at Xijing Hospital were retrospectively analyzed. Ultimately, 43 patients with EF and 129 patients without EF were included in the analysis and propensity-score matched in a 1:3 ratio. The clinical characteristics and radiomics features were extracted. Univariate and multivariate stepwise logistic regression analyses were used to determine the risk factors associated with EF. Results: The median follow-up time was 24.0 months (range, 1.3-104.9 months), and the median overall survival (OS) was 13.1 months in patients with EF. A total of 1,158 radiomics features were extracted, and eight radiomics features were selected for inclusion into a model for predicting EF, with an area under the receiver operating characteristic curve (AUC) value of 0.794. Multivariate analysis showed that tumor length, tumor volume, T stage, lymphocyte rate (LR), and grade IV esophagus stenosis were related to EF, and the AUC value of clinical model for predicting EF was 0.849. The clinical-radiomics model had the best performance in predicting EF with an AUC value of 0.896. Conclusions: The clinical-radiomics nomogram can predict the risk of EF in ESCC patients and is helpful for the individualized treatment of EC.

9.
Vaccines (Basel) ; 12(4)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38675792

RESUMO

Chitosan, a natural polysaccharide derived from chitin, possesses biocompatibility, biodegradability, and mucoadhesive characteristics, making it an attractive material for the delivery of mRNA payloads to the nasal mucosa and promoting their uptake by target cells such as epithelial and immune cells (e.g., dendritic cells and macrophages). In this project, we aimed at developing novel lipid-based nanoformulations for mRNA delivery to counteract the pandemic caused by SARS-CoV-2 virus. The formulations achieved a mRNA encapsulation efficiency of ~80.2% with chitosan-lipid nanoparticles, as measured by the RiboGreen assay. Furthermore, the evaluation of SARS-CoV-2 Spike (S) receptor-binding domain (RBD) expression via ELISA for our vaccine formulations showed transfection levels in human embryonic kidney cells (HEK 293), lung carcinoma cells (A549), and dendritic cells (DC 2.4) equal to 9.9 ± 0.1 ng/mL (174.7 ± 1.1 fold change from untreated cells (UT)), 7.0 ± 0.2 ng/mL (128.1 ± 4.9 fold change from UT), and 0.9 ± 0.0 ng/mL (18.0 ± 0.1 fold change from UT), respectively. Our most promising vaccine formulation was also demonstrated to be amenable to lyophilization with minimal degradation of loaded mRNA, paving the way towards a more accessible and stable vaccine. Preliminary in vivo studies in mice were performed to assess the systemic and local immune responses. Nasal bronchoalveolar lavage fluid (BALF) wash showed that utilizing the optimized formulation resulted in local antibody concentrations and did not trigger any systemic antibody response. However, if further improved and developed, it could potentially contribute to the management of COVID-19 through nasopharyngeal immunization strategies.

10.
Biomed Pharmacother ; 175: 116669, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38677243

RESUMO

BACKGROUND: The lack of an efficient way to screen patients who are responsive to immunotherapy challenges PD1/CTLA4-targeting cancer treatment. Immunotherapeutic efficacy cannot be clearly determined by peripheral blood analyses, tissue gene markers or CT/MR value. Here, we used a radionuclide and imaging techniques to investigate the novel dual targeted antibody cadonilimab (AK104) in PD1/CTLA4-positive cells in vivo. METHODS: First, humanized PD1/CTLA4 mice were purchased from Biocytogen Pharmaceuticals (Beijing) Co., Ltd. to express hPD1/CTLA4 in T-cells. Then, mouse colon cancer MC38-hPD-L1 cell xenografts were established in humanized mice. A bispecific antibody targeting PD1/CTLA4 (AK104) was labeled with radio-nuclide iodine isotopes. Immuno-PET/CT imaging was performed using a bispecific monoclonal antibody (mAb) probe 124I-AK104, developed in-house, to locate PD1+/CTLA4+ tumor-infiltrating T cells and monitor their distribution in mice to evaluate the therapeutic effect. RESULTS: The 124I-AK104 dual-antibody was successfully constructed with ideal radiochemical characteristics, in vitro stability and specificity. The results of immuno-PET showed that 124I-AK104 revealed strong hPD1/CTLA4-positive responses with high specificity in humanized mice. High uptake of 124I-AK104 was observed not only at the tumor site but also in the spleen. Compared with PD1- or CTLA4-targeting mAb imaging, 124I-AK104 imaging had excellent standard uptake values at the tumor site and higher tumor to nontumor (T/NT) ratios. CONCLUSIONS: The results demonstrated the potential of translating 124I-AK104 into a method for screening patients who benefit from immunotherapy and the efficacy, as well as the feasibility, of this method was verified by immuno-PET imaging of humanized mice.

11.
J Adv Res ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38677545

RESUMO

BACKGROUND: N6-methyladenosine (m6A) RNA methylation modifications have been widely implicated in the metabolic reprogramming of various cell types within the tumor microenvironment (TME) and are essential for meeting the demands of cellular growth and maintaining tissue homeostasis, enabling cells to adapt to the specific conditions of the TME. An increasing number of research studies have focused on the role of m6A modifications in glucose, amino acid and lipid metabolism, revealing their capacity to induce aberrant changes in metabolite levels. These changes may in turn trigger oncogenic signaling pathways, leading to substantial alterations within the TME. Notably, certain metabolites, including lactate, succinate, fumarate, 2-hydroxyglutarate (2-HG), glutamate, glutamine, methionine, S-adenosylmethionine, fatty acids and cholesterol, exhibit pronounced deviations from normal levels. These deviations not only foster tumorigenesis, proliferation and angiogenesis but also give rise to an immunosuppressive TME, thereby facilitating immune evasion by the tumor. AIM OF REVIEW: The primary objective of this review is to comprehensively discuss the regulatory role of m6A modifications in the aforementioned metabolites and their potential impact on the development of an immunosuppressive TME through metabolic alterations. KEY SCIENTIFIC CONCEPTS OF REVIEW: This review aims to elaborate on the intricate networks governed by the m6A-metabolite-TME axis and underscores its pivotal role in tumor progression. Furthermore, we delve into the potential implications of the m6A-metabolite-TME axis for the development of novel and targeted therapeutic strategies in cancer research.

12.
Langmuir ; 40(15): 7843-7859, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38557084

RESUMO

Two-dimensional materials have shown immense promise for gas-sensing applications due to their remarkable surface-to-volume ratios and tunable chemical properties. However, despite their potential, the utilization of ReSe2 as a gas-sensing material for nitrogen-containing molecules, including NO2, NO, and NH3, has remained unexplored. The choice of doping atoms in ReSe2 plays a pivotal role in enhancing the gas adsorption and gas-sensing capabilities. Herein, the adsorption properties of nitrogen-containing gas molecules on metal and non-metal single-atom (Au, Pt, Ni, P, and S)-doped ReSe2 monolayers have been evaluated systematically via ab initio calculations based on density functional theory. The findings strongly suggest that intrinsic ReSe2 has better selectivity toward NO2 than toward NO and NH3. Moreover, our results provide compelling evidence that all of the dopants, with the exception of S, significantly enhance both the adsorption strength and charge transfer between ReSe2 and the investigated molecules. Notably, P-decorated ReSe2 showed the highest adsorption energy for NO2 and NO (-1.93 and -1.52 eV, respectively) with charge transfer above 0.5e, while Ni-decorated ReSe2 exhibited the highest adsorption energy for NH3 (-0.76 eV). In addition, on the basis of transition theory, we found that only Au-ReSe2 and Ni-ReSe2 can serve as reusable chemiresisitve gas sensors for reliable detection of NO and NH3, respectively. Hence, our findings indicate that gas-sensing applications can be significantly improved by utilizing a single-atom-doped ReSe2 monolayer.

13.
Zhen Ci Yan Jiu ; 49(4): 376-383, 2024 Apr 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38649205

RESUMO

OBJECTIVES: To observe the effects of moxibustion on blood lipid metabolism, pathological morphology of thoracic aorta, and the expression of silent information regulator 1 (SIRT1) and forkhead box transcription factor O3a (FOXO3a) in ApoE-/- atherosclerosis (AS) mice, so as to explore the potential mechanism of moxibustion in preventing and treating AS. METHODS: Ten C57BL/6J mice were fed a normal diet as the control group, and 30 ApoE-/- mice were fed a high-fat diet to establish the AS model, which were randomly divided into the model group, simvastatin group, and moxibustion group, with 10 mice in each group. From the first day of modeling, mice in the moxibustion group received mild moxibustion treatment at "Shenque"(CV8), "Yinlingquan"(SP9), bilateral "Neiguan"(PC6) and "Xuehai"(SP10) for 30 min per time;the mice in the simvastatin group were given simvastatin orally (2.5 mg·kg-1·d-1), with both treatments given once daily, 5 times a week, with a total intervention period of 12 weeks. The body weight and general condition of the mice were observed and recorded during the intervention period. After the intervention, the contents of serum total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) were measured using an automated biochemistry analyzer. Hematoxylin eosin (HE) staining was used to observe the pathological morphology of the thoracic aorta. ELISA was used to measure the contents of serum oxidized low-density lipoprotein (ox-LDL) and superoxide dismutase (SOD) activity. Western blot and real-time fluorescent quantitative PCR analysis were used to detect the expression levels of SIRT1 and FOXO3a protein and mRNA in the thoracic aorta. RESULTS: Compared with the control group, body weight at the 8th and 12th week, serum TC, TG, LDL-C, and ox-LDL contents of the model group mice were significantly increased(P<0.05, P<0.01), while the HDL-C contents, SOD activity, and the expression levels of SIRT1 protein and mRNA in the thoracic aorta were significantly decreased(P<0.05, P<0.01). HE staining showed thickening of the aortic intima, endothelial cell degeneration, swelling, and shedding. Compared with the model group, body weight at the 8th and 12th week, serum TC, TG, LDL-C, and ox-LDL contents of mice in the simvastatin group and moxibustion group were significantly decreased(P<0.01), while the serum SOD activity, expression levels of SIRT1 protein and mRNA in the thoracic aorta were significantly increased(P<0.01). The HDL-C contents were significantly increased in the simvastatin group(P<0.05). The thoracic aortic structure was more intact in both groups, with a more regular lumen and orderly arrangement of the elastic membrane in the media, and a slight amount of endothelial cell degeneration and swelling in the intima. There was no significant difference in the evaluated indexes between the moxibustion group and the simvastatin group and the pathological changes in the thoracic aorta were similar between the two groups. CONCLUSIONS: Moxibustion can reduce the body weight of AS model mice, regulate lipid levels, repair vascular intima, and alleviate endothelial damage. Its mechanism of action may be related to the regulation of the SIRT1/FOXO3a signaling pathway to improve oxidative damage.


Assuntos
Apolipoproteínas E , Aterosclerose , Proteína Forkhead Box O3 , Moxibustão , Sirtuína 1 , Animais , Humanos , Masculino , Camundongos , Pontos de Acupuntura , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Aterosclerose/metabolismo , Aterosclerose/genética , Aterosclerose/terapia , Proteína Forkhead Box O3/metabolismo , Proteína Forkhead Box O3/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais , Sirtuína 1/metabolismo , Sirtuína 1/genética , Triglicerídeos/sangue , Triglicerídeos/metabolismo
14.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(2): 482-489, 2024 Mar 20.
Artigo em Chinês | MEDLINE | ID: mdl-38645846

RESUMO

Metabolic reprogramming plays a critical role in tumorigenesis and tumor progression. The metabolism and the proliferation of tumors are regulated by both intrinsic factors within the tumor and the availability of metabolites in the tumor microenvironment (TME). The metabolic niche within the TME is primarily orchestrated at 3 levels: 1) the regulation of tumor metabolism by factors intrinsic to the tumors, 2) the interaction between tumor cells and T cells, macrophages, and stromal cells, and 3) the metabolic heterogeneity of tumor cells within the tissue space. Herein, we provided a concise overview of the various metabolic regulatory modes observed in tumor cells. Additionally, we extensively analyzed the interaction between tumor cells and other cells within the TME, as well as the metabolic characteristics and functions of different types of cells. Ultimately, this review provides a theoretical basis and novel insights for the precision treatment of tumors.


Assuntos
Neoplasias , Microambiente Tumoral , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Macrófagos/metabolismo , Comunicação Celular , Linfócitos T/metabolismo , Células Estromais/metabolismo , Células Estromais/patologia
15.
Sensors (Basel) ; 24(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38610323

RESUMO

The mature processes of metal oxide semiconductors (MOS) have attracted considerable interest. However, the low sensitivity of metal oxide semiconductor gas sensors is still challenging, and constrains its practical applications. Bimetallic nanoparticles are of interest owing to their excellent catalytic properties. This excellent feature of bimetallic nanoparticles can solve the problems existing in MOS gas sensors, such as the low response, high operating temperature and slow response time. To enhance acetone sensing performance, we successfully synthesized Au-Pd/ZnO nanorods. In this work, we discovered that Au-Pd nanoparticles modified on ZnO nanorods can remarkably enhance sensor response. The Au-Pd/ZnO gas sensor has long-term stability and an excellent response/recovery process. This excellent sensing performance is attributed to the synergistic catalytic effect of bimetallic AuPd nanoparticles. Moreover, the electronic and chemical sensitization of noble metals also makes a great contribution. This work presents a simple method for preparing Au-Pd/ZnO nanorods and provides a new solution for the detection of acetone based on metal oxide semiconductor.

16.
Mol Pharm ; 21(4): 2034-2042, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38456403

RESUMO

Pancreatic ductal adenocarcinoma (PDAC), which has a poor prognosis and nonspecific symptoms and progresses rapidly, is the most common pancreatic cancer type. Inhibitors targeting KRAS G12D and G12C mutations have been pivotal in PDAC treatment. Cancer cells with different KRAS mutations exhibit various degrees of glutamine dependency; in particular, cells with KRAS G12D mutations exhibit increased glutamine uptake. (2S,4R)-4-[18F]FGln has recently been developed for clinical cancer diagnosis and tumor cell metabolism analysis. Thus, we verified the heterogeneity of glutamine dependency in PDAC models with different KRAS mutations by a visual and noninvasive method with (2S,4R)-4-[18F]FGln. Two tumor-bearing mouse models (bearing the KRAS G12D or G12C mutation) were injected with (2S,4R)-4-[18F]FGln, and positron emission tomography (PET) imaging features and biodistribution were observed and analyzed. The SUVmax in the regions of interest (ROI) was significantly higher in PANC-1 (G12D) tumors than in MIA PaCa-2 (G12C) tumors. Biodistribution analysis revealed higher tumor accumulation of (2S,4R)-4-[18F]FGln and other metrics, such as T/M and T/B, in the PANC-1 mouse models compared to those in the MIAPaCa-2 mouse models. In conclusion, PDAC cells with the KRAS G12D and G12C mutations exhibit various degrees of (2S,4R)-4-[18F]FGln uptake, indicating that (2S,4R)-4-[18F]FGln might be applied to detect KRAS G12C and G12D mutations and provide treatment guidance.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Camundongos , Carcinoma Ductal Pancreático/diagnóstico por imagem , Carcinoma Ductal Pancreático/genética , Glutamina/metabolismo , Glutamina/farmacologia , Mutação , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Distribuição Tecidual , Radioisótopos de Flúor/química , Radioisótopos de Flúor/farmacologia
17.
Cancer Lett ; 588: 216744, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38431037

RESUMO

Hepatocellular carcinoma (HCC) stands as a formidable global health challenge due to its prevalence, marked by high mortality and morbidity rates. This cancer type exhibits a multifaceted etiology, prominently linked to viral infections, non-alcoholic fatty liver disease, and genomic mutations. The inherent heterogeneity of HCC, coupled with its proclivity for developing drug resistance, presents formidable obstacles to effective therapeutic interventions. Autophagy, a fundamental catabolic process, plays a pivotal role in maintaining cellular homeostasis, responding to stressors such as nutrient deprivation. In the context of HCC, tumor cells exploit autophagy, either augmenting or impeding its activity, thereby influencing tumorigenesis. This comprehensive review underscores the dualistic role of autophagy in HCC, acting as both a pro-survival and pro-death mechanism, impacting the trajectory of tumorigenesis. The anti-carcinogenic potential of autophagy is evident in its ability to enhance apoptosis and ferroptosis in HCC cells. Pertinently, dysregulated autophagy fosters drug resistance in the carcinogenic context. Both genomic and epigenetic factors can regulate autophagy in HCC progression. Recognizing the paramount importance of autophagy in HCC progression, this review introduces pharmacological compounds capable of modulating autophagy-either inducing or inhibiting it, as promising avenues in HCC therapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Autofagia , Apoptose , Carcinogênese/patologia , Linhagem Celular Tumoral
18.
Biomed Pharmacother ; 174: 116479, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537580

RESUMO

RNA methylation modifications are widespread in eukaryotes and prokaryotes, with N6-methyladenosine (m6A) the most common among them. Demethylases, including Fat mass and obesity associated gene (FTO) and AlkB homolog 5 (ALKBH5), are important in maintaining the balance between RNA methylation and demethylation. Recent studies have clearly shown that demethylases affect the biological functions of tumors by regulating their m6A levels. However, their effects are complicated, and even opposite results have appeared in different articles. Here, we summarize the complex regulatory networks of demethylases, including the most important and common pathways, to clarify the role of demethylases in tumors. In addition, we describe the relationships between demethylases and the tumor microenvironment, and introduce their regulatory mechanisms. Finally, we discuss evaluation of demethylases for tumor diagnosis and prognosis, as well as the clinical application of demethylase inhibitors, providing a strong basis for their large-scale clinical application in the future.


Assuntos
Adenosina , Adenosina/análogos & derivados , Neoplasias , Microambiente Tumoral , Humanos , Adenosina/metabolismo , Neoplasias/genética , Neoplasias/patologia , Neoplasias/enzimologia , Metilação , Animais , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Homólogo AlkB 5 da RNA Desmetilase/genética , Regulação Neoplásica da Expressão Gênica
19.
J Nucl Med ; 65(5): 728-734, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38514084

RESUMO

Immune checkpoint blockade (ICB) has achieved groundbreaking results in clinical cancer therapy; however, only a subset of patients experience durable benefits. The aim of this study was to explore strategies for predicting tumor responses to optimize the intervention approach using ICB therapy. Methods: We used a bilateral mouse model for proteomics analysis to identify new imaging biomarkers for tumor responses to ICB therapy. A PET radiotracer was synthesized by radiolabeling the identified biomarker-targeting antibody with 124I. The radiotracer was then tested for PET prediction of tumor responses to ICB therapy. Results: We identified galectin-1 (Gal-1), a member of the carbohydrate-binding lectin family, as a potential negative biomarker for ICB efficacy. We established that Gal-1 inhibition promotes a sensitive immune phenotype within the tumor microenvironment (TME) for ICB therapy. To assess the pre-ICB treatment status of the TME, a Gal-1-targeted PET radiotracer, 124I-αGal-1, was developed. PET imaging with 124I-αGal-1 showed the pretreatment immunosuppressive status of the TME before the initiation of therapy, thus enabling the prediction of ICB resistance in advance. Moreover, the use of hydrogel scaffolds loaded with a Gal-1 inhibitor, thiodigalactoside, demonstrated that a single dose of thiodigalactoside-hydrogel significantly potentiated ICB and adoptive cell transfer immunotherapies by remodeling the immunosuppressive TME. Conclusion: Our study underscores the potential of Gal-1-targeted PET imaging as a valuable strategy for early-stage monitoring of tumor responses to ICB therapy. Additionally, Gal-1 inhibition effectively counteracts the immunosuppressive TME, resulting in enhanced immunotherapy efficacy.


Assuntos
Galectina 1 , Imunoterapia , Tomografia por Emissão de Pósitrons , Microambiente Tumoral , Galectina 1/metabolismo , Animais , Camundongos , Linhagem Celular Tumoral , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Feminino , Resultado do Tratamento , Radioisótopos do Iodo , Humanos
20.
Ying Yong Sheng Tai Xue Bao ; 35(1): 195-202, 2024 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-38511456

RESUMO

In order to understand the response and adaptation mechanisms of photosynthetic characteristics and growth for Cunninghamia lanceolata saplings in the subtropical region to global warming, we conducted the root-box warming experiment (ambient, ambient+4 ℃) at the Sanming Forest Ecosystem National Observation and Research Station in Fujian Province to investigate the effects of soil warming on the photosynthetic characteristics and growth of C. lanceolata saplings in different seasons. The results showed that the net photosynthetic rate (Pn) and stomatal conductance (gs) of C. lanceolata significantly decreased in summer compared with in spring and autumn. Soil warming had no effect on the Pn and gs of C. lanceolata. However, the interaction between warming and season significantly impacted the leaf water use efficiency (WUE). The tree height and ground diameter growth of C. lanceolata significantly increased in spring compared with in summer and autumn. Warming significantly reduced ground diameter growth, and it diminished the net diameter growth by 48.1% in autumn. However, warming had no impact on the tree height growth of C. lanceolata in each season. The specific leaf area, soluble sugar, and non-structural carbohydrates contents of C. lanceolata significantly improved in summer and autumn compared with in spring. Warming had rarely influence on leaf functional traits in each season. In conclusion, the response of photosynthesis for C. lanceolata to soil warming was insignificant. The photosynthesis of C. lanceolata exhibited significant seasonal dynamics, primarily controlled by gs. C. lanceolata adapted to soil warming by adjusting WUE, and it adjusted to high temperatures and drought stress in summer by increasing soluble sugar content and specific leaf area. The effect of warming on ground diameter growth of C. lanceolata was primarily driven by soil moisture. The seasonal difference in the growth of C. lanceolata was influenced by the photosynthesis of C. lanceolata and the trade-off between the utilization and storage of photosynthetic products.


Assuntos
Cunninghamia , Ecossistema , Carboidratos , Fotossíntese , Estações do Ano , Solo/química , Açúcares , Árvores/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA