Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
Adv Healthc Mater ; 13(10): e2303472, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37985951

RESUMO

Current molecular photoacoustic (PA) probes are designed with either stimulus-turned "on" or assembly-enhanced signals to trace biological analytes/events. PA probes based on the nature-derived click reaction between 2-cyano-6-aminobenzothiazole (CBT) and cysteine (Cys) (i.e., CBT-Cys click reaction) possess both "turn-on" and "enhanced" PA signals; and thus, should have higher sensitivity. Nevertheless, such PA probes, particularly those for sensitive imaging of tumor hypoxia, remain scarce. Herein, a PA probe NI-Cys(StBu)-Dap(IR780)-CBT (NI-C-CBT) is rationally designed, which after being internalized by hypoxic tumor cells, is cleaved by nitroreductase under the reduction condition to yield cyclic dimer C-CBT-Dimer to turn the PA signal "ON" and subsequently assembled into nanoparticles C-CBT-NPs with additionally enhanced PA signal ("Enhanced"). NI-C-CBT exhibits 1.7-fold "ON" and 3.2-fold overall "Enhanced" PA signals in vitro. Moreover, it provides 1.9-fold and 2.8-fold overall enhanced PA signals for tumor hypoxia imaging in HeLa cells and HeLa tumor-bearing mice, respectively. This strategy is expected to be widely applied to design more "smart" PA probes for sensitive imaging of important biological events in vivo in near future.


Assuntos
Nanopartículas , Técnicas Fotoacústicas , Humanos , Animais , Camundongos , Células HeLa , Hipóxia Tumoral , Diagnóstico por Imagem , Nitrorredutases , Técnicas Fotoacústicas/métodos
2.
Adv Mater ; 36(3): e2306736, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37853568

RESUMO

Immune cells are pivotal in cancer immunotherapy, yet their therapeutic effectiveness is often hampered by limited tumor infiltration and inhibitory tumor microenvironments. An alkaline phosphatase (ALP)-responsive and transformable supramolecular bis-specific cell engager (Supra-BiCE) to harness natural killer (NK)/T cells for effective cancer immunotherapy is introduced here. The Supra-BiCE, consisting of both SA-P (a phosphorylated peptide targeting and blocking programmed cell death ligand 1 (PD-L1)) and SA-T (a phosphorylated peptide targeting and blocking T cell immunoglobulin and ITIM domain (TIGIT)) is constructed by a simple co-assembling strategy. Upon intravenous administration, Supra-BiCE self-assembles into nanoribbons and interacts with NK/T cells via TIGIT. Notably, these nanoribbons undergo transformation into long nanofibrils within ALP-overexpressing tumor regions, resulting in enhanced binding affinities of Supra-BiCE to both PD-L1 and TIGIT. Consequently, this leads to the accumulation and retention of NK/T cells within tumor regions. Furthermore, the combinatorial blockade of checkpoints by Supra-BiCE activates infiltrating NK/T cells. Moreover, the adjustable peptide ratio in Supra-BiCE enables customization for optimal therapeutic effects against distinct tumor types. Particularly, Supra-BiCE (T:P = 1:3) achieved 98.27% tumor suppression rate against colon carcinoma model. Overall, this study offers a promising tool for engaging NK and T cells for cancer immunotherapy.


Assuntos
Neoplasias do Colo , Nanotubos de Carbono , Neoplasias , Humanos , Linfócitos T/metabolismo , Células Matadoras Naturais , Antígeno B7-H1 , Imunoterapia/métodos , Receptores Imunológicos/metabolismo , Peptídeos/farmacologia , Microambiente Tumoral
3.
Small ; 20(21): e2307390, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38100300

RESUMO

Tumor immunotherapy has become a research hotspot in cancer treatment, with macrophages playing a crucial role in tumor development. However, the tumor microenvironment restricts macrophage functionality, limiting their therapeutic potential. Therefore, modulating macrophage function and polarization is essential for enhancing tumor immunotherapy outcomes. Here, a supramolecular peptide amphiphile drug-delivery system (SPADS) is utilized to reprogram macrophages and reshape the tumor immune microenvironment (TIM) for immune-based therapies. The approach involved designing highly specific SPADS that selectively targets surface receptors of M2-type macrophages (M2-Mφ). These targeted peptides induced M2-Mφ repolarization into M1-type macrophages by dual inhibition of endoplasmic reticulum and oxidative stresses, resulting in improved macrophagic antitumor activity and immunoregulatory function. Additionally, TIM reshaping disrupted the immune evasion mechanisms employed by tumor cells, leading to increased infiltration, and activation of immune cells. Furthermore, the synergistic effect of macrophage reshaping and anti-PD-1 antibody (aPD-1) therapy significantly improved the immune system's ability to recognize and eliminate tumor cells, thereby enhancing tumor immunotherapy efficacy. SPADS utilization also induced lung metastasis suppression. Overall, this study demonstrates the potential of SPADS to drive macrophage reprogramming and reshape TIM, providing new insights, and directions for developing more effective immunotherapeutic approaches in cancer treatment.


Assuntos
Neoplasias da Mama , Imunoterapia , Nanosferas , Peptídeos , Microambiente Tumoral , Macrófagos Associados a Tumor , Microambiente Tumoral/efeitos dos fármacos , Imunoterapia/métodos , Macrófagos Associados a Tumor/efeitos dos fármacos , Macrófagos Associados a Tumor/imunologia , Animais , Nanosferas/química , Neoplasias da Mama/terapia , Neoplasias da Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/imunologia , Peptídeos/química , Peptídeos/farmacologia , Feminino , Camundongos , Linhagem Celular Tumoral , Humanos , Camundongos Endogâmicos BALB C
4.
Adv Sci (Weinh) ; 10(30): e2302909, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37653617

RESUMO

Retinal ischemia is involved in the occurrence and development of various eye diseases, including glaucoma, diabetic retinopathy, and central retinal artery occlusion. To the best of our knowledge, few studies have reported self-assembling peptide natural products for the suppression of ocular inflammation and oxidative stress. Herein, a self-assembling peptide GFFYE is designed and synthesized, which can transform the non-hydrophilicity of rhein into an amphiphilic sustained-release therapeutic agent, and rhein-based therapeutic nanofibers (abbreviated as Rh-GFFYE) are constructed for the treatment of retinal ischemia-reperfusion (RIR) injury. Rh-GFFYE significantly ameliorates oxidative stress and inflammation in an in vitro oxygen-glucose deprivation (OGD) model of retinal ischemia and a rat model of RIR injury. Rh-GFFYE also significantly enhances retinal electrophysiological recovery and exhibits good biocompatibility. Importantly, Rh-GFFYE also promotes the transition of M1-type macrophages to the M2 type, ultimately altering the pro-inflammatory microenvironment. Further investigation of the treatment mechanism indicates that Rh-GFFYE activates the PI3K/AKT/mTOR signaling pathway to reduce oxidative stress and inhibits the NF-κB and STAT3 signaling pathways to affect inflammation and macrophage polarization. In conclusion, the rhein-loaded nanoplatform alleviates RIR injury by modulating the retinal microenvironment. The findings are expected to promote the clinical application of hydrophobic natural products in RIR injury-associated eye diseases.


Assuntos
Produtos Biológicos , Oftalmopatias , Nanofibras , Traumatismo por Reperfusão , Ratos , Animais , Microglia/metabolismo , Nanofibras/uso terapêutico , Fosfatidilinositol 3-Quinases , Estresse Oxidativo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Macrófagos/metabolismo , Inflamação/metabolismo , Oftalmopatias/metabolismo , Produtos Biológicos/metabolismo , Peptídeos/metabolismo , Isquemia
5.
Nano Lett ; 23(16): 7665-7674, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37535903

RESUMO

Precise manipulation of cancer cell death by harnessing reactive oxygen species (ROS) is a promising strategy to defeat malignant tumors. However, it is quite difficult to produce active ROS with spatial precision and regulate their biological outcomes. We succeed here in selectively generating short-lived and lipid-reactive hydroxyl radicals (•OH) adjacent to cancer cell membranes, successively eliciting lipid peroxidation and ferroptosis. DiFc-K-pY, a phosphorylated self-assembling precursor that consists of two branched Fc moieties and interacts specifically with epidermal growth factor receptor, can in situ produce membrane-bound nanofibers and enrich ferrocene moieties on cancer cell membranes in response to alkaline phosphatase. Within the acidic tumor microenvironment, DiFc-K-pY nanofibers efficiently convert tumoral H2O2 to active •OH around the target cell membranes via Fenton-like reactions, leading to lipid peroxidation and ferroptosis with good cellular selectivity. Our strategy successfully prevents tumor progression with acceptable biocompatibility through intratumoral administration.


Assuntos
Nanofibras , Neoplasias , Humanos , Espécies Reativas de Oxigênio/metabolismo , Metalocenos , Peróxido de Hidrogênio/metabolismo , Morte Celular , Neoplasias/terapia , Oxirredução , Linhagem Celular Tumoral , Microambiente Tumoral
6.
Theranostics ; 13(7): 2140-2153, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153748

RESUMO

Rationale: Although surgery, radioiodine therapy, and thyroid hormone therapy are the primary clinical treatments for differentiated thyroid carcinoma (DTC), effective therapy for locally advanced or progressive DTC remains challenging. BRAF V600E, the most common BRAF mutation subtype, is highly related to DTC. Previous studies prove that combination of kinase inhibitors and chemotherapeutic drugs may be a potential approach for DTC treatment. In this study, a supramolecular peptide nanofiber (SPNs) co-loaded with dabrafenib (Da) and doxorubicin (Dox) was constructed for targeted and synergistic therapy with BRAF V600E+ DTC. Methods: A self-assembling peptide nanofiber (Biotin-GDFDFDYGRGD, termed SPNs) bearing biotin at the N-terminus and a cancer-targeting ligand RGD at the C-terminus was used as a carrier for co-loading Da and Dox. D-phenylalanine and D-tyrosine (DFDFDY) are used to improve the stability of peptides in vivo. Under multiple non-covalent interactions, SPNs/Da/Dox assembled into longer and denser nanofibers. RGD ligand endows self-assembled nanofibers with targeting cancer cells and co-delivery, thereby improving cellular uptake of payloads. Results: Both Da and Dox indicated decreased IC50 values upon encapsulation in SPNs. Co-delivery of Da and Dox by SPNs exhibited the strongest therapeutic effect in vitro and in vivo by inhibiting ERK phosphorylation in BRAF V600E mutant thyroid cancer cells. Moreover, SPNs enable efficient drug delivery and lower Dox dosage, thereby significantly reducing its side effects. Conclusion: This study proposes a promising paradigm for the synergistic treatment of DTC with Da and Dox using supramolecular self-assembled peptides as carriers.


Assuntos
Adenocarcinoma , Nanofibras , Neoplasias da Glândula Tireoide , Humanos , Proteínas Proto-Oncogênicas B-raf/genética , Radioisótopos do Iodo/uso terapêutico , Biotina , Ligantes , Doxorrubicina , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/patologia , Adenocarcinoma/tratamento farmacológico , Peptídeos/química , Oligopeptídeos
7.
Nanoscale ; 15(16): 7502-7509, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37017562

RESUMO

Hierarchical self-assembly based on peptides in nature is a multi-component interaction process, providing a broad platform for various bionanotechnological applications. However, the study of controlling the hierarchical structure transformation via the cooperation rules of different sequences is still rarely reported. Herein, we report a novel strategy of achieving higher hierarchical structures through cooperative self-assembly of hydrophobic tripeptides with reverse sequences. We unexpectedly found that Nap-FVY and its reverse sequence Nap-YVF self-assembled into nanospheres, respectively, while their mixture formed nanofibers, obviously exhibiting a low-to-high hierarchical structure transformation. Further, this phenomenon was demonstrated by the other two collocations. The cooperation of Nap-VYF and Nap-FYV afforded the transformation from nanofibers to twisted nanoribbons, and the cooperation of Nap-VFY and Nap-YFV realized the transformation from nanoribbons to nanotubes. The reason may be that the cooperative systems in the anti-parallel ß-sheet conformation created more hydrogen bond interactions and in-register π-π stacking, promoting a more compact molecular arrangement. This work provides a handy approach for controlled hierarchical assembly and the development of various functional bionanomaterials.


Assuntos
Nanofibras , Nanosferas , Nanotubos de Carbono , Peptídeos/química , Nanofibras/química , Estrutura Secundária de Proteína
8.
Small Methods ; 7(5): e2201416, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36965100

RESUMO

Immunogenic cell death (ICD) approaches by encumbering mitochondrial functions provide great promise for the treatment of malignant tumors, but these kinds of ICD strategies are still in their infancy. Here, one multifunctional drug-loaded, cascade-targeted, and enzyme-instructed self-assembling peptide nanomedicine (Comp. 4) for ICD-based cancer therapy is constructed. Comp. 4 consists of 1) lonidamine (LND) that specifically interferes with mitochondrial functions; 2) a programmed death ligand 1 (PD-L1) binding peptide sequence (NTYYEDQG) and a mitochondria-specific motif (triphenylphosphonium, TPP) that can sequentially control the cell membrane and mitochondria targeting capacities, respectively; and 3) a -GD FD FpD Y- assembly core to in situ organize peptide assemblies responsive to alkaline phosphatase (ALP). Comp. 4 demonstrates noticeable structural and morphological transformations in the presence of ALP and produces peptide assemblies in mouse colon cancer cells (CT26) with high expressions of both ALP and PD-L1. Moreover, the presence of PD-L1- and mitochondria-specific motifs can assist Comp. 4 for effective endocytosis and endosomal escape, forming peptide assemblies and delivering LND into mitochondria. Consequently, Comp. 4 shows superior capacities to in vivo induce abundant mitochondrial oxidative stress, provoke robust ICD responses, and produce an immunogenic tumor microenvironment, successfully inhibiting CT26 tumor growth by eliciting a systemic ICD-based antitumor immunity.


Assuntos
Antígeno B7-H1 , Neoplasias , Animais , Camundongos , Morte Celular Imunogênica , Imunoterapia , Fosfatase Alcalina , Peptídeos , Corantes , Neoplasias/terapia
9.
ACS Nano ; 17(4): 3818-3837, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36787636

RESUMO

Neural stem cells (NSCs) are considered to be prospective replacements for neuronal cell loss as a result of spinal cord injury (SCI). However, the survival and neuronal differentiation of NSCs are strongly affected by the unfavorable microenvironment induced by SCI, which critically impairs their therapeutic ability to treat SCI. Herein, a strategy to fabricate PDGF-MP hydrogel (PDGF-MPH) microspheres (PDGF-MPHM) instead of bulk hydrogels is proposed to dramatically enhance the efficiency of platelet-derived growth factor mimetic peptide (PDGF-MP) in activating its receptor. PDGF-MPHM were fabricated by a piezoelectric ceramic-driven thermal electrospray device, had an average size of 9 µm, and also had the ability to activate the PDGFRß of NSCs more effectively than PDGF-MPH. In vitro, PDGF-MPHM exerted strong neuroprotective effects by maintaining the proliferation and inhibiting the apoptosis of NSCs in the presence of myelin extracts. In vivo, PDGF-MPHM inhibited M1 macrophage infiltration and extrinsic or intrinsic cells apoptosis on the seventh day after SCI. Eight weeks after SCI, the T10 SCI treatment results showed that PDGF-MPHM + NSCs significantly promoted the survival of NSCs and neuronal differentiation, reduced lesion size, and considerably improved motor function recovery in SCI rats by stimulating axonal regeneration, synapse formation, and angiogenesis in comparison with the NSCs graft group. Therefore, our findings provide insights into the ability of PDGF-MPHM to be a promising therapeutic agent for SCI repair.


Assuntos
Hidrogéis , Traumatismos da Medula Espinal , Ratos , Animais , Hidrogéis/farmacologia , Hidrogéis/uso terapêutico , Fator de Crescimento Derivado de Plaquetas/farmacologia , Fator de Crescimento Derivado de Plaquetas/uso terapêutico , Diferenciação Celular , Microesferas , Estudos Prospectivos , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/patologia , Peptídeos/farmacologia , Medula Espinal/patologia
10.
J Am Chem Soc ; 145(8): 4366-4371, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36669158

RESUMO

Innovative methods for engineering cancer cell membranes promise to manipulate cell-cell interactions and boost cell-based cancer therapeutics. Here, we illustrate an in situ approach to selectively modify cancer cell membranes by employing an enzyme-instructed peptide self-assembly (EISA) strategy. Using three phosphopeptides (pY1, pY2, and pY3) targeting the membrane-bound epidermal growth factor receptor (EGFR) and differing in just one phosphorylated tyrosine, we reveal that site-specific phosphorylation patterns in pY1, pY2, and pY3 can distinctly command their preorganization levels, self-assembling kinetics, and spatial distributions of the resultant peptide assemblies in cellulo. Overall, pY1 is the most capable of producing preorganized assemblies and shows the fastest dephosphorylation reaction in the presence of alkaline phosphatase (ALP), as well as the highest binding affinity for EGFR after dephosphorylation. Consequently, pY1 exhibits the greatest capacity to construct stable peptide assemblies on cancer cell membranes with the assistance of both ALP and EGFR. We further use peptide-protein and peptide-peptide co-assembly strategies to apply two types of antigens, namely ovalbumin (OVA) protein and dinitrophenyl (DNP) hapten respectively, on cancer cell membranes. This study demonstrates a very useful technique for the in situ construction of membrane-bound peptide assemblies around cancer cells and implies a versatile strategy to artificially enrich cancer cell membrane components for potential cancer immunotherapy.


Assuntos
Neoplasias , Humanos , Neoplasias/metabolismo , Receptores ErbB/metabolismo , Membrana Celular/metabolismo , Fosforilação , Fosfopeptídeos/metabolismo , Fosfatase Alcalina/metabolismo
11.
Bioact Mater ; 19: 88-102, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35441114

RESUMO

Autologous mosaicplasty is a common approach used to treat osteochondral defects in clinical practice. Gap integration between host and transplanted plugs requires bone tissue reservation and hyaline cartilage regeneration without uneven surface, graft necrosis and sclerosis. However, poor gap integration is a serious concern, which eventually leads to deterioration of joint function. To deal with such complications, this study has developed a strategy to effectively enhance integration of the gap region following mosaicplasty by applying injectable bioactive supramolecular nanofiber-enabled gelatin methacryloyl (GelMA) hydrogel (BSN-GelMA). A rabbit osteochondral defect model demonstrated that BSN-GelMA achieved seamless osteochondral healing in the gap region between plugs of osteochondral defects following mosaicplasty, as early as six weeks. Moreover, the International Cartilage Repair Society score, histology score, glycosaminoglycan content, subchondral bone volume, and collagen II expression were observed to be the highest in the gap region of BSN-GelMA treated group. This improved outcome was due to bio-interactive materials, which acted as tissue fillers to bridge the gap, prevent cartilage degeneration, and promote graft survival and migration of bone marrow mesenchymal stem cells by releasing bioactive supramolecular nanofibers from the GelMA hydrogel. This study provides a powerful and applicable approach to improve gap integration after autologous mosaicplasty. It is also a promising off-the-shelf bioactive material for cell-free in situ tissue regeneration.

12.
Adv Mater ; 34(37): e2202625, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35906003

RESUMO

In cancer radiotherapy, the lack of fixed DNA damage by oxygen in hypoxic microenvironment of solid tumors often leads to severe radioresistance. Nitric oxide (NO) is a potent radiosensitizer that acts in two ways. It can directly react with the radical DNA thus fixing the damage. It also normalizes the abnormal tumor vessels, thereby increasing blood perfusion and oxygen supply. To achieve these functions, the dosage and duration of NO treatment need to be carefully controlled, otherwise it will lead to the exact opposite outcomes. However, a delivery method that fulfills both requirements is still lacking. A NO depot is designed for the control of NO releasing both over quantity and duration for hypoxic tumor vessel normalization and radiosensitization. In B16-tumor-bearing mice, the depot can provide low dosage NO continuously and release large amount of NO immediately before irradiation for a short period of time. These two modes of treatment work in synergy to reverse the radioresistance of B16 tumors more efficiently than releasing at single dosage.


Assuntos
Neoplasias , Radiossensibilizantes , Animais , Hipóxia , Camundongos , Neoplasias/patologia , Neoplasias/radioterapia , Óxido Nítrico , Oxigênio , Tolerância a Radiação , Radiossensibilizantes/farmacologia , Radiossensibilizantes/uso terapêutico , Microambiente Tumoral
13.
J Biomed Nanotechnol ; 18(4): 1019-1027, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35854443

RESUMO

Hypoxia is a characteristic feature of most solid tumors, which promotes the proliferation, metastasis, and invasion of tumors and stimulates the resistance of cancer treatments, leading to the serious consequences of tumor recurrence. The exploration of hypoxia detection technology will aid tumor diagnosis and treatment. Fluorescence imaging technology is an accurate and efficient hypoxia detection technology. It has attracted significant research interest, but designing novel fluorescence probes, especially stimuli-responsive probes with high sensitivity and low toxicity is still challenging. In this work, we report a hypoxia-responsive molecular bioprobe lighted up by peptide self-assembly, which contains aggregationinduced emission (AIE) fluorescent molecule TPE, hypoxia-responsive azo group (-N═N-), the self-assembling peptide GFFY, and targeting ligand RGD. The resulting peptide derivative TPE-GFFY-N═N-EERGD forms supramolecular nanofibers but emit weak fluorescence because the azobenzene moiety can effectively quench the fluorescence of the TPE dye. However, the fluorescence-quenched nanofibers could be lighted up dramatically when the azo group is reduced. More importantly, this "turn-on" supramolecular fluorescence bioprobe enables effective detecting tumor hypoxia due to the overexpressed azoreductase in the tumor microenvironment. This work affords a paradigm of designing environmentsensitive fluorescent molecular probes for tumor hypoxia imaging.


Assuntos
Sondas Moleculares , Neoplasias , Corantes Fluorescentes/química , Humanos , Hipóxia/diagnóstico por imagem , Neoplasias/diagnóstico por imagem , Imagem Óptica , Peptídeos/química , Microambiente Tumoral
14.
Acta Pharm Sin B ; 12(6): 2740-2750, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35755291

RESUMO

Immunogenic cell death (ICD) plays a major role in cancer immunotherapy by stimulating specific T cell responses and restoring the antitumor immune system. However, effective type II ICD inducers without biotoxicity are still very limited. Herein, a tentative drug- or photosensitizer-free strategy was developed by employing enzymatic self-assembly of the peptide F-pY-T to induce mitochondrial oxidative stress in cancer cells. Upon dephosphorylation catalyzed by alkaline phosphatase overexpressed on cancer cells, the peptide F-pY-T self-assembled to form nanoparticles, which were subsequently internalized. These affected the morphology of mitochondria and induced serious reactive oxygen species production, causing the ICD characterized by the release of danger-associated molecular patterns (DAMPs). DAMPs enhanced specific immune responses by promoting the maturation of DCs and the intratumoral infiltration of tumor-specific T cells to eradicate tumor cells. The dramatic immunotherapeutic capacity could be enhanced further by combination therapy of F-pY-T and anti-PD-L1 agents without visible biotoxicity in the main organs. Thus, our results revealed an alternative strategy to induce efficient ICD by physically promoting mitochondrial oxidative stress.

15.
Biomater Sci ; 10(12): 3092-3098, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35522938

RESUMO

The development of novel vaccine adjuvants is essential for the production of modern vaccines against infectious agents and cancer. We recently reported a supramolecular hydrogel of a self-assembling D-tetra-peptide named Nap-GDFDFDY (Gel-gffy) that can evoke potent humoral and cellular immune responses; however, the determinants of its immunostimulatory properties were not characterized. In this study, we show that the amino acid sequence of the peptide determines the adjuvant potency of Gel-gffy. We designed and synthesized five Gel-gffy variants (Sol-gfgy, Sol-ggfy, Gel-gffg, Gel-gfyf, and Gel-gyff) by substituting the phenylalanine and tyrosine to glycine or changing the position of the tyrosine in the parent D-tetra-peptide. First, we characterized their gelation properties, nanomorphology, and secondary structure using transmission electron microscopy and circular dichroism; next, we examined their immunostimulatory properties. Gel-gfyf, Gel-gyff and Gel-gffy markedly upregulated maturation marker expression on bone marrow-derived dendritic cells. Moreover, the Gel-gfyf-, Gel-gyff- or Gel-gffy-encapsulated ovalbumin (OVA) vaccine induced robust humoral and cellular immune response in vivo. Notably, Gel-gffy had the strongest immunostimulatory activity. Our findings demonstrate that both the position and number of aromatic amino acids are crucial in determining the adjuvant potency of Gel-gffy, thus providing a valuable insight into designing peptide hydrogels as vaccine adjuvants.


Assuntos
Hidrogéis , Vacinas , Adjuvantes Imunológicos/química , Adjuvantes Imunológicos/farmacologia , Adjuvantes Farmacêuticos , Sequência de Aminoácidos , Hidrogéis/química , Ovalbumina/química , Peptídeos , Tirosina
16.
Biomater Adv ; 134: 112590, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35527146

RESUMO

The shortage of donor kidneys is an important factor restricting kidney transplantation for patients with end-stage renal disease. To overcome this problem, we used decellularized kidney scaffolds and nephron progenitor cells (NPCs) as seed cells to construct bioengineered kidneys (BEKs). To reduce the effect of extracellular matrix (ECM) loss during the decellularization process on the cell growth microenvironment, we used dextrose to minimize collagen loss in decellularized kidney scaffolds. At the same time, to further improve the growth microenvironment of seed cells in the decellularized scaffolds, we modified the decellularized scaffolds with the self-assembling polypeptide Naphthalenephenylalanine-phenylalanine-glycine-arginine-glycine-aspartic (Nap-FFGRGD) to promote the adhesion and proliferation of seed cells in the scaffolds. NPCs were perfused into the decellularized kidney scaffolds and then the BEKs were cultured in vitro and transplanted in vivo. Markers of podocytes and renal tubules expressed in the glomeruli and renal tubules of the BEKs were detected by immunofluorescence staining, respectively were, suggesting that NPCs can continue to differentiate into renal cells and achieve nephron segment-specific re-population through self-assembly. These results indicate that by relying on the microenvironment provided by Nap-FFGRGD modified decellularized scaffolds, NPCs can be used to construct BEKs for transplantation in the future due to the self-assembly properties of organoids.


Assuntos
Arginina , Alicerces Teciduais , Glicina , Humanos , Rim , Néfrons , Fenilalanina , Células-Tronco , Alicerces Teciduais/química
17.
J Mater Chem B ; 10(17): 3242-3247, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35437539

RESUMO

Enzyme-instructed self-assembly (EISA) has several advantages in the preparation of supramolecular self-assembly materials for biomedical applications. In this study, we demonstrated that the enzyme-instructed self-assembly (EISA) strategy could assist the self-assembly and hydrogelation of two hydrophobic and bioactive peptides, tyroservatide (YSV) and laminin pentapeptide (YIGSR). We first synthesized the peptide derivatives of Nap-GFFYSV (peptide 1) and Nap-GFFYIGSR (peptide 2) and found that both peptides could not self-assemble into hydrogels due to their poor solubility. We therefore designed the phosphorylated precursors of the two hydrophobic peptides, Nap-GFFpYSV (precursor 1) and Nap-GFFpYIGSR (precursor 2), respectively, which had good solubility and can be dephosphorylated by alkaline phosphatase (ALP) to form supramolecular hydrogels. In addition, we found that the EISA could also occur on the surface of cells that overexpress ALP. The EISA strategy was a powerful method to generate hydrogels of hydrophobic compounds. We envision the big promise of the strategy in the preparation of biomaterials and nanomaterials of hydrophobic bioactive molecules.


Assuntos
Nanoestruturas , Peptídeos , Fosfatase Alcalina/química , Materiais Biocompatíveis/química , Hidrogéis/química , Peptídeos/química
18.
J Nanobiotechnology ; 20(1): 201, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35473604

RESUMO

Chronic wounds represent a major challenge to the present healthcare system. In recent decades, many topical therapies have been investigated for the treatment of chronic wounds, including different types of wound dressings, antimicrobial agents, and cell therapy. Platelet-derived growth factor (PDGF) plays an important role in wound healing and has been approved for treatment of wounds related to diabetes mellitus. However, the high cost and short retention time of PDGF protein have limited its wide application. To overcome this challenge, we designed a PDGF-mimicking peptide by connecting PDGF epitope VRKIEIVRKK and self-assembling motif derived from ß-amyloid peptide. The resultant peptide can self-assemble into a fibril-rich network and leads to supramolecular hydrogelation with good stability. The hydrophilic epitope can be exposed on the surface of nanofibrils, which might contribute to the binding and activation of PDGF receptors. The forming hydrogel is able to induce the growth and migration of vascular endothelial cells and promote the formation of vascular branches. In the full-thickness skin wounds of healthy mice, after the application of the hydrogel, the density of neovascularization marked by CD31 was greater than that in the control group on Day 3. Larger collagen deposition and a thicker epidermis were observed on Day 12. These results demonstrate that the hydrogel can stimulate collagen deposition and angiogenesis, enhance skin regeneration, and show an excellent therapeutic effect. Taken together, this work not only provides new insight into the design of bioactive peptides but also offers a promising biomaterial for wound healing.


Assuntos
Células Endoteliais , Hidrogéis , Animais , Becaplermina , Colágeno/metabolismo , Células Endoteliais/metabolismo , Epitopos , Camundongos , Fator de Crescimento Derivado de Plaquetas/metabolismo , Cicatrização
19.
Bioact Mater ; 9: 120-133, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34820560

RESUMO

Organelles are responsible for the efficient storage and transport of substances in living systems. A myriad of extracellular vesicles (EVs) acts as a bridge to exchange signaling molecules in cell-cell communication, and the highly dynamic tubulins and actins contribute to efficient intracellular substance transport. The inexhaustible cues of natural cargo delivery by organelles inspire researchers to explore the construction of biomimetic architectures for "smart" delivery carriers. Herein, we report a 10-hydroxycamptothecin (HCPT)-peptide conjugate HpYss that simulates the artificial EV-to-filament transformation process for precise liver cancer therapy. Under the sequential stimulus of extracellular alkaline phosphatase (ALP) and intracellular glutathione (GSH), HpYss proceeds via tandem self-assembly with a morphological transformation from nanoparticles to nanofibers. The experimental phase diagram elucidates the influence of ALP and GSH contents on the self-assembled nanostructures. In addition, the dynamic transformation of organelle-mimetic architectures that are formed by HpYss in HepG2 cells enables the efficient delivery of the anticancer drug HCPT to the nucleus, and the size-shape change from extracellular nanoparticles (50-100 nm) to intracellular nanofibers (4-9 nm) is verified to be of key importance for nuclear delivery. Nuclear targeting of HpYss amplifies apoptosis, thus significantly enhancing the inhibitory effect of HCPT (>10-fold) to HepG2 cells. Benefitting from the spatiotemporally controlled nanostructures, HpYss exhibited deep penetration, enhanced accumulation, and long-term retention in multicellular spheroid and xenograft models, potently abolishing liver tumor growth and preventing lung metastasis. We envision that our organelle-mimicking delivery strategy provides a novel paradigm for designing nanomedicine to cancer therapy.

20.
Talanta ; 239: 123078, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34823863

RESUMO

Alkaline phosphatase (ALP) exists in both normal and pathological tissues. Spatiotemporal variations in ALP levels can reveal its potential physiological functions and changes that occur during pathological conditions. However, it is still challenging to exploit fluorescent probes that can measure ALP activity under good spatial and temporal resolutions. Herein, enzyme-instructed self-assembly (EISA) was used to construct a high-performing analytical tool (MN-pY) to probe ALP activity. MN-pY alone (free state) showed negligible fluorescence but presented an almost 13-fold increase in fluorescence intensity in the presence of ALP (assembly state). Mechanism study indicated the increase in fluorescence intensity was due to hydrogelation and formation of supramolecular fibrils, mainly consisting of dephosphorylated MN-Y. The dephosphorylation and further fibrillation of MN-pY could induce the formation of a "hydrophobic pocket", leading to a further increase in fluorescence intensity. Moreover, MN-pY could selectively illuminate HeLa cells with a higher ALP expression but not LO2 cells with lower ALP levels, promising a potential application in cancer diagnosis.


Assuntos
Fosfatase Alcalina , Corantes Fluorescentes , Fluorescência , Células HeLa , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA