Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Clin Res Hepatol Gastroenterol ; 48(3): 102290, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311060

RESUMO

The primary treatment for early esophageal cancer and precancerous lesions is endoscopic submucosal dissection (ESD). However, this approach leads to a high incidence of postoperative esophageal stenosis, which can significantly impact a patient's quality of life. While various methods are available to prevent post-ESD esophageal stenosis, their effectiveness varies. Therefore, this study aims to provide an overview of the currently employed methods for preventing post-ESD esophageal stenosis in clinical practice in view of assisting clinical practitioners.


Assuntos
Ressecção Endoscópica de Mucosa , Neoplasias Esofágicas , Estenose Esofágica , Humanos , Estenose Esofágica/etiologia , Estenose Esofágica/prevenção & controle , Ressecção Endoscópica de Mucosa/efeitos adversos , Ressecção Endoscópica de Mucosa/métodos , Qualidade de Vida , Neoplasias Esofágicas/patologia , Complicações Pós-Operatórias/prevenção & controle , Complicações Pós-Operatórias/etiologia
2.
Front Oncol ; 13: 1271463, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37886180

RESUMO

Background: Selective lateral lymph node (LLN) dissection with total mesorectal excision after neoadjuvant chemoradiotherapy (nCRT) is pointed out to reduce lateral compartment recurrence and to improve survival in patients with rectal cancer with LLN metastases. This study aimed to explore the safety, surgical indications, and survival outcomes of LLN dissection after nCRT. Methods: This multicenter retrospective study included patients with rectal cancer with clinical evidence of LLN metastases (n = 466) treated across three hospitals in China. Patients who underwent total mesorectal excision and LLN dissection were grouped into nCRT (n = 155) and non-nCRT (n = 291), respectively. Propensity score matching was used to minimize selection bias. Results: After matching, nCRT did not significantly increase the surgery duration, intraoperative blood loss or postoperative complications (P > 0.05). In a multivariate logistic regression analysis, poor/mucinous/signet adenocarcinoma (P = 0.042) and post-nCRT LLN short diameter ≥7 mm (P < 0.001) were independent risk factors for pathological LLN metastasis after nCRT. Overall survival (P < 0.001) and disease-free survival (P < 0.001) were significantly worse in patients with LLN metastasis, which was, however, not an independent risk factor for survival after eliminating confounders. Multivariate prognostic analysis of 40-patient subset with pathological LLN metastasis showed that distant metastasis, metastasis beyond the obturator or internal iliac region, and ≥2 LLN metastasis were independent predictors of poor overall survival. Conclusions: Selective LLN dissection after nCRT is safe and feasible with acceptable perioperative outcomes. Patients with a post-nCRT LLN short diameter ≥7 mm or poor/mucinous/signet adenocarcinoma should receive supplementary LLN dissection after nCRT. However, patients with distant metastasis, metastasis beyond the obturator or internal iliac region, and involvement of ≥2 LLN may not benefit from LLN dissection, and LLN dissection should be carefully considered in such patients.

3.
J Am Soc Nephrol ; 29(4): 1128-1140, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29335243

RESUMO

A critical aspect of kidney function occurs at the glomerulus, the capillary network that filters the blood. The glomerular basement membrane (GBM) is a key component of filtration, yet our understanding of GBM interactions with mesangial cells, specialized pericytes that provide structural stability to glomeruli, is limited. We investigated the role of nephronectin (Npnt), a GBM component and known ligand of α8ß1 integrin. Immunolocalization and in situ hybridization studies in kidneys of adult mice revealed that nephronectin is produced by podocytes and deposited into the GBM. Conditional deletion of Npnt from nephron progenitors caused a pronounced increase in mesangial cell number and mesangial sclerosis. Nephronectin colocalized with α8ß1 integrin to novel, specialized adhesion structures that occurred at sites of mesangial cell protrusion at the base of the capillary loops. Absence of nephronectin disrupted these adhesion structures, leading to mislocalization of α8ß1. Podocyte-specific deletion of Npnt also led to mesangial sclerosis in mice. These results demonstrate a novel role for nephronectin and α8ß1 integrin in a newly described adhesion complex and begin to uncover the molecular interactions between the GBM and mesangial cells, which govern mesangial cell behavior and may have a role in pathologic states.


Assuntos
Proteínas da Matriz Extracelular/fisiologia , Membrana Basal Glomerular/fisiologia , Mesângio Glomerular/citologia , Pericitos/citologia , Podócitos/metabolismo , Animais , Adesão Celular/fisiologia , Contagem de Células , Células Epiteliais/metabolismo , Proteínas da Matriz Extracelular/biossíntese , Proteínas da Matriz Extracelular/deficiência , Feminino , Adesões Focais , Deleção de Genes , Mesângio Glomerular/anormalidades , Integrinas/metabolismo , Glomérulos Renais/anormalidades , Masculino , Camundongos , Camundongos Mutantes , Especificidade de Órgãos , Pericitos/metabolismo
4.
Development ; 144(19): 3511-3520, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28860115

RESUMO

In many types of tubules, continuity of the lumen is paramount to tubular function, yet how tubules generate lumen continuity in vivo is not known. We recently found that the F-actin-binding protein afadin is required for lumen continuity in developing renal tubules, though its mechanism of action remains unknown. Here, we demonstrate that afadin is required for lumen continuity by orienting the mitotic spindle during cell division. Using an in vitro 3D cyst model, we find that afadin localizes to the cell cortex adjacent to the spindle poles and orients the mitotic spindle. In tubules, cell division may be oriented relative to two axes: longitudinal and apical-basal. Unexpectedly, in vivo examination of early-stage developing nephron tubules reveals that cell division is not oriented in the longitudinal (or planar-polarized) axis. However, cell division is oriented perpendicular to the apical-basal axis. Absence of afadin in vivo leads to misorientation of apical-basal cell division in nephron tubules. Together, these results support a model whereby afadin determines lumen placement by directing apical-basal spindle orientation, resulting in a continuous lumen and normal tubule morphogenesis.


Assuntos
Divisão Celular , Túbulos Renais/embriologia , Túbulos Renais/metabolismo , Proteínas dos Microfilamentos/metabolismo , Animais , Células Cultivadas , Cães , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Doenças Renais Císticas/patologia , Túbulos Renais/patologia , Células Madin Darby de Rim Canino , Masculino , Camundongos , Morfogênese , Néfrons/metabolismo , Néfrons/patologia , Fuso Acromático/metabolismo
5.
Dev Biol ; 418(1): 66-74, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27542690

RESUMO

Previous studies have shown CD34 family member Podocalyxin is required for epithelial lumen formation in vitro. We demonstrate that Endoglycan, a CD34 family member with homology to Podocalyxin, is produced prior to lumen formation in developing nephrons. Endoglycan localizes to Rab11-containing vesicles in nephron progenitors, and then relocalizes to the apical surface as progenitors epithelialize. Once an apical/luminal surface is formed, Endoglycan (and the actin-binding protein Ezrin) localize to large, intraluminal structures that may be vesicles/exosomes. We generated mice lacking Endoglycan and found mutants had timely initiation of lumen formation and continuous lumens, similar to controls. Mice with conditional deletion of both Endoglycan and Podocalyxin in developing nephrons also had normal tubular lumens. Despite this, Endoglycan/Podocalyxin is required for apical recruitment of the adaptor protein NHERF1, but not Ezrin, in podocyte precursors, a subset of the epithelia. In summary, while CD34 family members appear dispensable for lumen formation, our data identify Endoglycan as a novel pre-luminal marker and suggest lumen formation occurs via vesicular trafficking of apical cargo that includes Endoglycan.


Assuntos
Antígenos CD34/metabolismo , Mucinas/metabolismo , Néfrons/embriologia , Sialoglicoproteínas/metabolismo , Animais , Proteínas do Citoesqueleto/metabolismo , Células Epiteliais/citologia , Camundongos , Camundongos Transgênicos , Mucinas/genética , Néfrons/metabolismo , Fosfoproteínas/metabolismo , Podócitos/citologia , Sialoglicoproteínas/genética , Trocadores de Sódio-Hidrogênio/metabolismo
6.
J Cell Sci ; 128(23): 4293-305, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26490995

RESUMO

The Rho GTPase Cdc42 regulates key signaling pathways required for multiple cell functions, including maintenance of shape, polarity, proliferation, migration, differentiation and morphogenesis. Although previous studies have shown that Cdc42 is required for proper epithelial development and maintenance, its exact molecular function in kidney development is not well understood. In this study, we define the specific role of Cdc42 during murine kidney epithelial tubulogenesis by deleting it selectively at the initiation of ureteric bud or metanephric mesenchyme development. Deletion in either lineage results in abnormal tubulogenesis, with profound defects in polarity, lumen formation and the actin cytoskeleton. Ultimately, these defects lead to renal failure. Additionally, in vitro analysis of Cdc42-null collecting duct cells shows that Cdc42 controls these processes by regulating the polarity Par complex (Par3-Par6-aPKC-Cdc42) and the cytoskeletal proteins N-Wasp and ezrin. Thus, we conclude that the principal role of Cdc42 in ureteric bud and metanephric mesenchyme development is to regulate epithelial cell polarity and the actin cytoskeleton.


Assuntos
Polaridade Celular/fisiologia , Citoesqueleto/metabolismo , Células Epiteliais/metabolismo , Túbulos Renais/embriologia , Proteína cdc42 de Ligação ao GTP/metabolismo , Animais , Citoesqueleto/genética , Células Epiteliais/citologia , Camundongos , Proteína cdc42 de Ligação ao GTP/genética
7.
Development ; 140(8): 1774-84, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23487309

RESUMO

A fundamental process in biology is the de novo formation and morphogenesis of polarized tubules. Although these processes are essential for the formation of multiple metazoan organ systems, little is known about the molecular mechanisms that regulate them. In this study, we have characterized several steps in tubule formation and morphogenesis using the mouse kidney as a model system. We report that kidney mesenchymal cells contain discrete Par3-expressing membrane microdomains that become restricted to an apical domain, coinciding with lumen formation. Once lumen formation has been initiated, elongation occurs by simultaneous extension and additional de novo lumen generation. We demonstrate that lumen formation and elongation require afadin, a nectin adaptor protein implicated in adherens junction formation. Mice that lack afadin in nephron precursors show evidence of Par3-expressing membrane microdomains, but fail to develop normal apical-basal polarity and generate a continuous lumen. Absence of afadin led to delayed and diminished integration of nectin complexes and failure to recruit R-cadherin. Furthermore, we demonstrate that afadin is required for Par complex formation. Together, these results suggest that afadin acts upstream of the Par complex to regulate the integration and/or coalescence of membrane microdomains, thereby establishing apical-basal polarity and lumen formation/elongation during kidney tubulogenesis.


Assuntos
Polaridade Celular/fisiologia , Túbulos Renais/embriologia , Células-Tronco Mesenquimais/fisiologia , Proteínas dos Microfilamentos/metabolismo , Morfogênese/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Análise de Variância , Animais , Moléculas de Adesão Celular/metabolismo , Proteínas de Ciclo Celular , Imunofluorescência , Técnicas Histológicas , Processamento de Imagem Assistida por Computador , Túbulos Renais/ultraestrutura , Camundongos , Microscopia Confocal , Microscopia Eletrônica
8.
Mol Reprod Dev ; 79(2): 128-37, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22128093

RESUMO

Obesity increases the risk of female reproductive tract cancers, but the underlying mechanistic link between the two is ill-defined. Thus, the objective of the current study was to identify obesity-dependent changes in the expression of immediate early (IE) genes that contribute to cell proliferation and differentiation, and epithelial-mesenchymal transition (EMT) genes that promote cell migration. When HeLa cells were treated for 0-48 hr with IGF-1, leptin, TNFα, or IL-6, each individual adipocytokine altered the abundance of IE (cJUN, cFOS, and cMYC) and EMT (SNAI1, SNAI2, and TWIST1) mRNA abundance. For example, IGF-1 increased cJUN and cFOS and decreased cMYC; leptin increased cFOS; IL-6 increased cFOS and cMYC; and TNFα increased cJUN and cFOS mRNA abundance. Likewise, EMT gene expression was altered by IGF-1, TNFα, and IL-6. SNAI1 was increased by IGF-1 and IL-6; SNAI2 was increased by IGF-1 and TNFα; and TWIST1 was increased by TNFα and IL-6. Chronic exposure to adipocytokines also altered EMT gene expression in the whole uterus of obese compared to normal-weight mice. Specifically, there was no difference in cJun, cFos, or cMyc mRNA abundance between normal-weight and obese animals. Snai1, Snai2, and Twist1 mRNA abundance, however, was increased in the uterus of obese females and correlated with increased circulating IGF-1 levels. These data indicate that obesity-dependent alterations in adipocytokine levels regulate the expression of genes associated with cell proliferation and migration, and therefore may provide a plausible mechanism for obesity-dependent increases in cancers of the female reproductive tract.


Assuntos
Adipocinas/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Genes Precoces/fisiologia , Genitália Feminina/efeitos dos fármacos , Adipocinas/genética , Adipocinas/metabolismo , Animais , Diferenciação Celular/genética , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Feminino , Genes fos/fisiologia , Genes jun/fisiologia , Genes myc/fisiologia , Genitália Feminina/metabolismo , Genitália Feminina/fisiologia , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA