Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 912: 169104, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38070565

RESUMO

Prolonged exposure to environmentally relevant amounts of cadmium (Cd) in aquatic environments, even at small doses (0.1 and 1 µg/L), might endanger the health of underwater creatures. This research delved into the impacts of a four-month cadmium exposure on Mozambique tilapia (Oreochromis mossambicus), aiming to uncover the mechanisms behind it. Through close examination, we found that the 4-momth cadmium exposure led to harmful effects on the fish's gills, muscles, brain, and intestines. This exposure also triggered changes in gene expressions in the brain and liver, affected the respiratory system and weakened liver's ability to detoxify and defend against potential infections. Looking deeper into the fish's gut, we noticed alterations in energy-related genes and disruptions in immune pathways, making it more susceptible to illnesses. The exposure to cadmium also had an impact on the fish's gut and water-dwelling microorganisms, reducing diversity and encouraging harmful microbial communities. Interestingly, some gut microbes seemed to assist in breaking down and detoxifying cadmium, which could potentially protect the fish. Taken together, prolonged low-level cadmium exposure impaired gill, muscle, and brain function, suppressed immunity, disrupted intestines, and altered microbial balance, leading to hindered growth. These insights illuminate cadmium's impact on fish, addressing vital environmental concerns.


Assuntos
Tilápia , Poluentes Químicos da Água , Animais , Tilápia/metabolismo , Cádmio/metabolismo , Músculos , Brânquias/metabolismo , Poluentes Químicos da Água/metabolismo
2.
Int J Mol Sci ; 23(9)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35563049

RESUMO

Oil palm is the most productive oil producing plant. Salt stress leads to growth damage and a decrease in yield of oil palm. However, the physiological responses of oil palm to salt stress and their underlying mechanisms are not clear. RNA-Seq was conducted on control and leaf samples from young palms challenged under three levels of salts (100, 250, and 500 mM NaCl) for 14 days. All three levels of salt stress activated EgSPCH expression and increased stomatal density of oil palm. Around 41% of differential expressed genes (DEGs) were putative EgSPCH binding target and were involved in multiple bioprocesses related to salt response. Overexpression of EgSPCH in Arabidopsis increased the stomatal production and lowered the salt tolerance. These data indicate that, in oil palm, salt activates EgSPCH to generate more stomata in response to salt stress, which differs from herbaceous plants. Our results might mirror the difference of salt-induced stomatal development between ligneous and herbaceous crops.


Assuntos
Arabidopsis , Regulação da Expressão Gênica de Plantas , Arabidopsis/genética , Folhas de Planta/genética , Estômatos de Plantas/genética , Estresse Salino/fisiologia , Tolerância ao Sal/genética , Estresse Fisiológico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA