Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Aquat Toxicol ; 222: 105452, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32092594

RESUMO

Arginine kinase (AK), an important member of the phosphokinase family, is involved in temporal and spatial adenosine triphosphate (ATP) buffering systems. AK plays an important role in physiological function and metabolic regulations, in particular tissues with high and fluctuating energy demands. In present study, four AK genes were firstly identified from Yesso scallop (Patinopecten yessoensis) genome, respectively named PyAK1-4. PyAKs have highly conserved structures with a six-exon/five-exon structure, except for PyAK3. PyAK3 contains an unusual two-domain structure and a "bridge intron" between the two domains, which may originate from gene duplication and subsequent fusion. Phylogenetic analysis showed that all PyAKs belonged to an AK supercluster together with other AK proteins from Mollusca, Platyhelminthes, Arthropoda, and Nematode. A transcriptome database demonstrated that PyAK3 and PyAK4 were the main functional executors with high expression level during larval development and in adult tissues, while PyAK1 and PyAK2 were expressed at a low level. Furthermore, both PyAK2 and PyAK3 showed notably high expression in the male gonad, and PyAK4 was broadly expressed in almost all tissues with the highest level in striated muscle, indicating a tissue-specific expression pattern of PyAKs. In addition, quantitative real-time PCR results demonstrated that the expression of PyAK2, PyAK3 and PyAK4 were significantly upregulated in response to pH stress, especially in an extremely acidifying condition (pH 6.5), revealing the possible involvement of PyAKs in energetic homeostasis during environmental changes. Collectively, a comprehensive analysis of PyAKs was conducted in P. yessoensis. The diversity of PyAKs and their specific expression patterns promote a better understanding of energy metabolism in the growth, development and environmental response of P. yessoensis.


Assuntos
Arginina Quinase/metabolismo , Pectinidae/enzimologia , Estresse Fisiológico/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Aclimatação/efeitos dos fármacos , Aclimatação/genética , Animais , Arginina Quinase/química , Arginina Quinase/genética , Bases de Dados Genéticas , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/genética , Genoma , Concentração de Íons de Hidrogênio , Pectinidae/genética , Filogenia , Estrutura Secundária de Proteína , Reação em Cadeia da Polimerase em Tempo Real , Água do Mar/química , Alinhamento de Sequência , Estresse Fisiológico/genética
2.
Fish Shellfish Immunol ; 79: 327-339, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29803664

RESUMO

Thioester-containing protein (TEP) family members are characterized by their unique intrachain ß-cysteinyl-γ-glutamyl thioesters, and they play important roles in innate immune responses. Although significant effects of TEP members on immunity have been reported in most vertebrates, as well as certain invertebrates, the complete TEP family has not been systematically characterized in scallops. In this study, five TEP family genes (PyC3, PyA2M, PyTEP1, PyTEP2 and PyCD109) were identified from Yesso scallop (Patinopecten yessoensis) through whole-genome scanning, including one pair of tandem duplications located on the same scaffold. Phylogenetic and protein structural analyses were performed to determine the identities and evolutionary relationships of the five genes (PyTEPs). The vast distribution of PyTEPs in TEP subfamilies confirmed that the Yesso scallop contains relatively comprehensive types of TEP members in evolution. The expression profiles of PyTEPs were determined in hemocytes after bacterial infection with gram-positive (Micrococcus luteus) and gram-negative (Vibrio anguillarum) using quantitative real-time PCR (qRT-PCR). Expression analysis revealed that the PyTEP genes exhibited disparate expression patterns in response to the infection by gram bacteria. A majority of PyTEP genes were overexpressed after bacterial stimulation at most time points, especially the notable elevation displayed by duplicated genes after V. anguillarum challenge. Interestingly, at different infection times, PyTEP1 and PyTEP2 shared analogous expression patterns, as did PyC3 and PyCD109. Taken together, these results help to characterize gene duplication and the evolutionary origin of PyTEPs and supplied valuable resources for elucidating their versatile roles in bivalve innate immune responses to bacterial pathogen challenges.


Assuntos
Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Pectinidae/genética , Pectinidae/imunologia , Sequência de Aminoácidos , Animais , Perfilação da Expressão Gênica , Micrococcus luteus/fisiologia , Família Multigênica/genética , Família Multigênica/imunologia , Filogenia , Alinhamento de Sequência , Vibrio/fisiologia
3.
Oncol Lett ; 10(2): 857-862, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26622583

RESUMO

Histone methyltransferase enhancer of zeste homolog 2 (EZH2) has been reported to be associated with certain malignant phenotypes in cervical cancer. However, clinicopathological parameters and clinical outcomes of EZH2 in cervical cancer, particularly in cervical squamous cell carcinoma (CSCC) remain largely unknown. The retrospective cohort comprising of 117 consecutive patients with CSCC was incorporated into a tissue microarray which also included 23 paired normal tissues. Immunohistochemical analysis was performed to evaluate the correlation between EZH2 expression and clinicopathological implications. Aberrant overexpression of EZH2 was frequently observed in CSCCs as compared with adjacent normal tissues (P=0.0005). Expression of EZH2 is associated with poor tumor differentiation grade (P=0.020) and lymphovascular invasion (P=0.012). Univariate analysis revealed that the patients with CSCC whose tumors exhibited higher EZH2 levels had inferior overall survival (OS) compared to those whose tumors expressed lower EZH2 (log rank P=0.004). In the multivariate analysis, EZH2 expression was an independent predictor of OS (hazard ratio = 1.836, 95% confidence interval: 1.090-2.993, P=0.022). EZH2 overexpression is common in the development of CSCC and is a promising prognostic predictor for patients with CSCC.

4.
PLoS One ; 9(8): e103965, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25090005

RESUMO

MicroRNA (miR)-150 has been reported to be dramatically downregulated in human epithelial ovarian cancer (EOC) tissues and patients' serum compared to normal controls. This study aimed to investigate clinical significance and molecular mechanisms of miR-150 in EOC. In the current study, quantitative real-time PCR analysis showed that miR-150 was significantly downregulated in human EOC tissues compared to normal tissue samples. Then, we demonstrated the significant associations of miR-150 downregulation with aggressive clinicopathological features of EOC patients, including high clinical stage and pathological grade, and shorter overall and progression-free survivals. More importantly, the multivariate analysis identified miR-150 expression as an independent prognostic biomarker in EOC. After that, luciferase reporter assays demonstrated that Zinc Finger E-Box Binding Homeobox 1 (ZEB1), a crucial regulator of epithelial-to-mesenchymal transition (EMT), was a direct target of miR-150 in EOC cells. Moreover, we found that the ectopic expression of miR-150 could efficiently inhibit cell proliferation, invasion and metastasis by suppressing the expression of ZEB1. Furthermore, we also observed a significantly negative correlation between miR-150 and ZEB1 mRNA expression in EOC tissues (rs = -0.45, P<0.001). In conclusion, these findings offer the convincing evidence that aberrant expression of miR-150 may play a role in tumor progression and prognosis in patients with EOC. Moreover, our data reveal that miR-150 may function as a tumor suppressor and modulate EOC cell proliferation, and invasion by directly and negatively regulating ZEB1, implying the re-expression of miR-150 might be a potential therapeutic strategy for EOC.


Assuntos
Proteínas de Homeodomínio/metabolismo , MicroRNAs/metabolismo , Neoplasias Epiteliais e Glandulares/genética , Neoplasias Epiteliais e Glandulares/patologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Carcinoma Epitelial do Ovário , Linhagem Celular Tumoral , Proliferação de Células , Progressão da Doença , Intervalo Livre de Doença , Regulação para Baixo , Feminino , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/genética , Humanos , Estimativa de Kaplan-Meier , MicroRNAs/genética , Pessoa de Meia-Idade , Análise Multivariada , Invasividade Neoplásica , Metástase Neoplásica , Prognóstico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Transcrição/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA