Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 466: 133465, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38246059

RESUMO

As emerging contaminants in textile dyeing sludge (TDS), the presence and types of microplastics (MPs) inevitably influence the combustion and pyrolysis of TDS. Their effects on the co-combustion/pyrolysis emissions and residual metals of TDS remain poorly understood. This study aimed to quantify the impacts of polyethylene (PE) and polypropylene (PP) on the transports and transformations of gaseous emissions and residual metals generated during the TDS combustion and pyrolysis in the air, oxy-fuel, and nitrogen atmospheres. Thermal degradation of the MPs in TDS occurred between 242-600 °C. MPs decomposed and interacted with the organic components of TDS to the extent that they increased the release of VOCs, dominated by oxygenated VOCs and hydrocarbons under the incineration and pyrolysis conditions, respectively. The presence of PE exerted a limited impact on the concentration and chemical form of metals, while PP reduced the residual amount of most metals due to the decomposition of mineral additives. Also, PP (with CaCO3 filler) reduced the acid-extractable content of cadmium, copper, and manganese in the bottom slag or coke but increased that of chromium. This study provides actionable insights into optimizing gas emissions, energy recovery, and ash reuse, thus reinforcing the pollution control strategies for both the MPs and TDS.

2.
J Dent Sci ; 18(3): 1199-1205, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37404664

RESUMO

Background/purpose: Metagenomic next-generation sequencing (mNGS) has been widely used for the detection of pathogens causing infectious diseases. This study aimed to evaluate the potential ability of mNGS to detect pathogens causing oral and maxillofacial space infection (OMSI) and compare the results with those of the traditional diagnostic microbial culture method. Materials and methods: We retrospectively reviewed the data of 218 patients diagnosed with OMSI who underwent microbial culture and mNGS at the Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, from July 2020 to January 2022. Results: The positivity rate of mNGS (216 cases) was significantly higher than that of microbial culture (123 cases). The most frequently detected bacteria were different between these two detection methods. Streptococcus constellatus (16.05%, 35), Streptococcus anginosus (15.69%, 34) and Klebsiella pneumoniae (6.88%, 15) were the most commonly isolated bacteria by culture. However, Peptostreptococcus stomatis (61.47%, 134), Parvimonas micra (68.35%, 149) and Streptococcus constellatus (57.34%, 125) were the most commonly detected bacteria by mNGS. mNGS also has advantages in diagnosing viral infections. The optimal numbers of diagnostic reads were 1162 and 588 for the diagnosis of Streptococcus anginosus and Streptococcus constellatus infections, respectively. Read numbers were significantly correlated with C-reactive protein (CRP), procalcitonin (PCT), and blood glucose levels and neutrophil percentage (NEUT%). Conclusion: For pathogens causing OMSI, mNGS had a higher rate of microbial pathogen detection and remarkable advantages in identifying coinfections involving viruses and fungi. The read numbers for mNGS are important for diagnostic accuracy and disease severity evaluation.

3.
Am J Otolaryngol ; 43(1): 103216, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34536922

RESUMO

The aim of this study was to determine the adequacy and safety of needle aspiration (NA) as an alternative to open surgical drainage for oral-maxillofacial abscesses. Fifteen consecutive patients who were diagnosed with oral-maxillofacial abscesses via contrast-enhanced CT from January 2020 to December 2020 were included. All patients were on antibiotics and treated with NA under local anaesthesia using a 20 mL syringe. Data collection included patient characteristics, signs and symptoms, physical examinations, laboratory tests, imaging findings, and outcomes. Next-generation sequencing (NGS) was used to identify the infectious microorganisms from the abscess samples. The study included 15 patients with oral-maxillofacial abscesses. None of our 15 patients required surgical incision and drainage, although repeat aspiration was required. However, after the first NA, the pain was reportedly extremely relieved for all patients. The average duration of antibiotic treatment was 9.20 ± 5.15 days (range 4-23 days). The abscess-affected spaces mainly included the masseter space and submandibular space. Odontogenic infection was the most common aetiology in 15 patients (10/15). The average volume of the abscesses on CT was 5866.26 ± 3627.18 mm3. The main pathogens identified in this study were Prevotella oris (5/15), Peptostreptococcus stomatis (4/15) and Porphyromonas endodontalis (2/15). According to the results of our study, the data support the use of NA as an effective, minimally invasive treatment modality for oral-maxillofacial abscesses. Surgeons should familiarise themselves with this technique, as it can easily be performed in the clinic using local anaesthesia, culture samples may be obtained, and airway obstruction and pain may be relieved.


Assuntos
Abscesso/terapia , Doenças da Boca/terapia , Paracentese/métodos , Abscesso/microbiologia , Adulto , Idoso , Antibacterianos/uso terapêutico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doenças da Boca/microbiologia , Estudos Retrospectivos , Resultado do Tratamento , Adulto Jovem
4.
Sci Total Environ ; 806(Pt 1): 150511, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34583067

RESUMO

Three different Cd(II) compounds were used to regulate Pseudomonas aeruginosa and Alcaligenes faecalis EPS (extracellular polymeric substances). The purpose of this study was to improve the content of EPS protein and the adsorption capacity of Cd(II) by different Cd(II) compounds. The results showed that Cd(NO3)2 had the best stress/induction effect on the two strains. Under the best stress/induction, the protein in EPS of the two strains increased most obviously, and the adsorption capacity of Cd(II) was increased by more than 40%. Under these conditions, the kinetics of the adsorption process of Cd(II) by Cd(NO3)2-EPSA. F (EPS produced by Alcaligenes faecalis under Cd(NO3)2 stress) could be well fitted by the Langmuir isotherm model, and the theoretical maximum adsorption amount of 1111.11 mg/g EPS could be obtained. The results of 3D-EEM, FTIR and XPS indicated that proteins, especially CO, CN and NH in proteins, played a major role in the removal of Cd(II) by Cd(NO3)2-EPSA. F. The results of this study show that the addition of Cd(NO3)2 can effectively regulate the content of chemical components, especially the content of protein, and thus greatly improve the removal efficiency of heavy metals, which shows great application prospects in the prevention and control of heavy metal pollution.


Assuntos
Compostos de Cádmio , Metais Pesados , Poluentes Químicos da Água , Adsorção , Cádmio , Matriz Extracelular de Substâncias Poliméricas , Cinética , Poluentes Químicos da Água/toxicidade
5.
Biomed Res Int ; 2017: 2564363, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29392129

RESUMO

Indole and its derivatives are typical nitrogen heterocyclic compounds and have been of immense concern since they are known for the risk of their toxic, recalcitrant, and carcinogenic properties for human and ecological environment. In this study, a Gram-negative bacterial strain of eliminating indole was isolated from a coking wastewater. The strain was confirmed as Acinetobacter pittii L1 based on the physiological and biochemical characterization and 16S ribosomal DNA (rDNA) gene sequence homology. 400 mg/L indole could be completely removed within 48 h by the strain on the optimum condition of 37°C, pH 7.4, and 150 rpm. The organic nitrogen was converted to NH3-N and then to NO3- and the organic carbon was partially transferred to CO2 during the indole biodegradation. The metabolic pathways were proposed to explain the indole degradation based on the liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis of indigo, 4-(3-Hydroxy-1H-pyrrol-2-yl)-2-oxo-but-3-enoic acid, and isatin. The toxicity of the biodegradation products was evaluated using the Microtox test, which revealed that the metabolites were more toxic than indole. Our research holds promise for the potential application of Acinetobacter pittii L1 for NHCs degradation, production of indigoids, and soil remediation as well as treatment of indole containing wastewater.


Assuntos
Acinetobacter/metabolismo , Biodegradação Ambiental , Indóis/metabolismo , Metaboloma/genética , Acinetobacter/genética , Índigo Carmim , Indóis/química , Indóis/toxicidade , Isatina/química , Isatina/metabolismo , Filogenia , RNA Ribossômico 16S/genética
6.
Bioresour Technol ; 225: 40-47, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27875767

RESUMO

A novel anthraquinone-2,6-disulfonate/MnOx-doped polypyrrole film (AQDS/Mn/PPy) electrode was prepared by one-step electropolymerization method and was used to improve performance of a reversible photo-bioelectrochemical cell (RPBEC). The RPBEC was operated in polarity reversion depended on dark/light reaction of alga Chlorella vulgaris by which sequential decolorization of azo dye and mineralization of decolorization products coupled with bioelectricity generation can be achieved. The results showed that formation of uniform AQDS/Mn/PPy film significantly enhanced electroactive surface area and electrocatalytic activity of carbon electrode. The RPBEC with AQDS/Mn/PPy electrodes demonstrated 77% increases in maximum power and 73% increases in Congo red decolorization rate before polarity reversion, and 198% increases in maximum power and 138% increases in decolorization products mineralization rate after polarity reversion, respectively, compared to the RPBEC with bare electrode. This was resulted from simultaneous dynamics improvement in half-reaction rate of anode and photo-biocathode due to enhanced electron transfer and algal-bacterial biofilm formation.


Assuntos
Antraquinonas/química , Compostos Azo/isolamento & purificação , Fontes de Energia Bioelétrica , Corantes/isolamento & purificação , Eletricidade , Compostos de Manganês/química , Óxidos/química , Fotoquímica/instrumentação , Polímeros/química , Pirróis/química , Biofilmes , Chlorella vulgaris/metabolismo , Eletrodos , Propriedades de Superfície
7.
J Environ Manage ; 162: 81-6, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26232567

RESUMO

The effect of potassium ferrate/ultrasonic (K2FeO4/US) treatment on the physicochemical features of textile dyeing sludge was studied. The soluble chemical oxygen demand (SCOD), deoxyribonucleic acid (DNA), sludge volume index (SVI), sludge viscosity, capillary suction time (CST) and particle size were measured to understand the observed changes in the sludge physicochemical features. The results showed that the combined K2FeO4/US treatment presented great advantages for disrupting the sludge floc structure over K2FeO4 or ultrasonic treatments alone. The optimal parameters of sludge disintegration were found to be a K2FeO4 treatment time of 60 min, a K2FeO4 dosage of 0.5936 g/g SS, an ultrasonic time of 15 min and an ultrasonic intensity of 0.72 W/mL. The initial median diameter of the sludge particles was 15.24 µm, and this value decreased by 35.89%. The CST was initially 59.6 s and increased by 231%, whereas the SVI was 97.78 mL/g and decreased by 25.89%. Scanning electron microscope (SEM) images indicated that the sludge surface was irregular and loose with a large amount of channels or voids during K2FeO4/US treatment. K2FeO4/US treatment synergistically enhanced the sludge solubilization and reached 668.67 mg/L SCOD, which is 31.81% greater than the additive value obtained with K2FeO4 treatment alone (215.95 mg/L) or with ultrasonic treatment alone (240 mg/L).


Assuntos
Resíduos Industriais , Compostos de Ferro/química , Compostos de Potássio/química , Esgotos/química , Ultrassom/métodos , Eliminação de Resíduos Líquidos/métodos , Análise da Demanda Biológica de Oxigênio , Corantes/química , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Têxteis
8.
Environ Sci Pollut Res Int ; 22(2): 1113-26, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25113833

RESUMO

The effects of sulfur compounds on the migration of a semi-volatile heavy metal (cadmium) during sludge incineration were investigated with two methods, i.e., experiments in a tubular furnace reactor and thermodynamic equilibrium calculations. The representative typical sludge with and without the addition of sulfur compounds was incinerated at 850 °C. The partitioning of Cd among the solid phase (bottom ash) and gas phase (fly ash and flue gas) was quantified. The results indicate that sulfur compounds in the elemental form and a reduced state could stabilize Cd in the form of CdS, aluminosilicate minerals, and polymetallic sulfides, whereas sulfur in the oxidized forms slightly increases Cd volatilization during incineration. For Cd solidification points, the inhibition effect on the volatilization of Cd is as follows: S > Na2SO4 > Na2S. Chemical equilibrium calculations indicate that sulfur binds with Cd and alters Cd speciation at low temperatures (<950 K). Furthermore, SiO2- and Al2O3-containing minerals can function as sorbents stabilizing Cd as condensed phase solids (CdSiO4 and CdAl2O4) according to the results of equilibrium calculations. These findings provide useful information for understanding the partitioning of Cd and thus facilitate the development of strategies to control Cd volatilization during sludge incineration.


Assuntos
Cádmio/análise , Esgotos/química , Sulfetos/análise , Cinza de Carvão/análise , Incineração , Termodinâmica
9.
Environ Res ; 132: 112-8, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24769559

RESUMO

As components of synthetic dyes, polycyclic aromatic hydrocarbons (PAHs) are present as contaminants in textile dyeing sludge due to the recalcitrance in wastewater treatment process, which may pose a threat to environment in the process of sludge disposal. In order to evaluate PAHs in textile dyeing sludge, comprehensive investigation comprising 10 textile dyeing plants was undertaken. Levels, composition profiles and risk assessment of 16 EPA-priority PAHs were analyzed in this study. The total concentrations of 16 PAHs (∑16 PAHs) varied from 1463 ± 177 ng g(-1) to 16,714 ± 1,507 ng g(-1) with a mean value of 6386 ng g(-1). The composition profiles of PAHs were characterized by 3- and 4-ring PAHs, among which phenanthrene, anthracene and fluoranthene were the most dominant components. The mean benzo[a]pyrene equivalent (BaPeq) concentration of ∑16 PAHs in textile dyeing sludge was 423 ng g(-1), which was 2-3 times higher than concentrations reported for urban soil. According to ecological risk assessment, the levels of PAHs in the textile dyeing sludge may cause a significant risk to soil ecosystem after landfill or dumping on soil.


Assuntos
Resíduos Industriais/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Têxteis , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA