RESUMO
In smoking-induced chronic obstructive pulmonary disease (COPD), various comorbidities are linked to systemic inflammation and infection-induced exacerbations. The underlying mechanisms are unclear but might provide therapeutic targets. T-cell activity is central in systemic inflammation and for infection-defense mechanisms and might be influenced by comorbidities. Hypothesis: Circulating biomarkers of comorbidities modulate the activity of T-cells of the T-helper type 1 (Th1) and/or T-cytotoxic type 1 (Tc1). T-cells in peripheral blood mononuclear cells (PBMCs) from non-smokers (NS), current smokers without COPD (S), and COPD subjects (total n = 34) were ex vivo activated towards Th1/Tc1 and were then stimulated with biomarkers for metabolic and/or cardiovascular comorbidities (Brain Natriuretic Peptide, BNP; chemokine (C-C motif) ligand 18, CCL18; C-X3-C motif chemokine ligand 1, CX3CL1; interleukin-18, IL-18) or for asthma- and/or cancer-related comorbidities (CCL22; epidermal growth factor, EGF; IL-17; periostin) each at 10 or 50 ng/mL. The Th1/Tc1 activation markers interferon-γ (IFNγ), tumor necrosis factor-α (TNFα), and granulocyte-macrophage colony-stimulating factor (GM-CSF) were analyzed in culture supernatants by Enzyme-Linked Immunosorbent Assay (ELISA). Ex-vivo activation induced IFNγ and TNFα without differences between the groups but GM-CSF more in S vs. NS. At 10 ng/mL, the different biomarkers increased or reduced the T-cell activation markers without a clear trend for one direction in the different categories of comorbidities or for the different T-cell activation markers. At 50 ng/mL, there was a clear shift towards suppressive effects, particularly for the asthma- and cancer-related biomarkers and in cells of S and COPD. Comorbidities might suppress T-cell immunity in COPD. This could explain the association of comorbidities with frequent exacerbations.
Assuntos
Biomarcadores/sangue , Citocinas/sangue , Doença Pulmonar Obstrutiva Crônica/imunologia , Fumar/efeitos adversos , Linfócitos T/fisiologia , Estudos de Casos e Controles , Comorbidade , Feminino , Alemanha/epidemiologia , Humanos , Masculino , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Fumantes , Fumar/sangueRESUMO
Welders have an increased susceptibility to airway infections with non-typeable Haemophilus influenzae (NTHi), which implicates immune defects and might promote pneumonia and chronic obstructive pulmonary disease (COPD). We hypothesized that welding-fume exposure suppresses Th1-lymphocyte activity. Non-effector CD4+ T-cells from blood of 45 welders (n = 23 gas metal arc welders, GMAW; n = 16 tungsten inert gas welders, TIG; n = 6 others) and 25 non-welders were ex vivo activated towards Th1 via polyclonal T-cell receptor stimulation and IL-12 (first activation step) and then stimulated with NTHi extract or lipopolysaccharide (LPS) (second activation step). IFNγ and IL-2 were measured by ELISA. In the first activation step, IFNγ was reduced in welders compared to non-welders and in the GMAW welders with higher concentrations of respirable particles compared to the lower exposed TIG welders. IFNγ was not influenced by tobacco smoking and correlated negatively with welding-fume exposure, respirable manganese, and iron. In the second activation step, NTHi and LPS induced additional IFNγ, which was reduced in current smokers compared to never smokers in welders as well as in non-welders. Analyzing both activation steps together, IFNγ production was lowest in smoking welders and highest in never smoking non-welders. IL-2 was not associated with any of these parameters. Welding-fume exposure might suppress Th1-based immune responses due to effects of particulate matter, which mainly consists of iron and manganese. For responses to NTHi this is strongest in smoking welders because welding fume suppresses T-cell activation towards Th1 and cigarette smoke suppresses the subsequent Th1-response to NTHi via LPS. Both effects are independent from IL-2-regulated T-cell proliferation. This might explain the increased susceptibility to infections and might promote COPD development.
Assuntos
Poluentes Ocupacionais do Ar , Exposição Ocupacional , Soldagem , Poluentes Ocupacionais do Ar/análise , Poluentes Ocupacionais do Ar/toxicidade , Gases , Exposição por Inalação/análise , Ferro , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise , Linfócitos T Auxiliares-Indutores/químicaRESUMO
COPD patients have an increased susceptibility to bacterial airway infections that can induce exacerbations. In response to infections, circulating monocytes become recruited to the infected tissue and secrete cytokines. We hypothesized that this cytokine response is reduced in COPD. Cultured peripheral blood monocytes of never smokers (NS) and smokers without (S) and with COPD (3 study populations, n = 36-37) were stimulated with extracts of Haemophilus influenzae, Staphylococcus aureus, or Streptococcus pneumoniae or with four different pathogen-associated molecular patterns (PAMPs). Four cytokines and 9 PAMP-related signaling molecules were measured and compared between the groups. Granulocyte-macrophage-colony-stimulating-factor responses to all stimulants were reduced in S and COPD compared to NS. Tumor-necrosis-factor-α responses to all bacterial extracts, peptidoglycan, and lipopolysaccharide were reduced in S and/or COPD. Interleukin-10 responses to S. aureus and lipoteichoic acid were increased in COPD. Correlations to pack-years and lung function were found. The peptidoglycan-receptor NOD2 and the mRNA of the lipopolysaccharide-receptor TLR4 were reduced in S and COPD. Cytokine responses of monocytes to bacteria are suppressed by smoking and in COPD possibly due to NOD2 and TLR4 reduction and/or interleukin-10 increase. This might help to explain the increased susceptibility to bacterial infections. These systemic molecular pathologies might be targets for therapeutic strategies to prevent infection-induced exacerbations. KEY MESSAGES: COPD subjects have an increased susceptibility to bacterial infections. This implies defects in the immune response to bacteria and is critical for disease progression. The cytokine response of monocytes to bacteria is reduced in COPD. This might be due to a reduced NOD2 and TLR4 and an increased IL-10 expression. This can explain the increased susceptibility to infections and help to identify drug targets.
Assuntos
Bactérias/imunologia , Monócitos/imunologia , Doença Pulmonar Obstrutiva Crônica/imunologia , Doença Pulmonar Obstrutiva Crônica/microbiologia , Fumar/efeitos adversos , Anticorpos/farmacologia , Feminino , Volume Expiratório Forçado , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Haemophilus influenzae/fisiologia , Humanos , Lipopolissacarídeos , Masculino , Pessoa de Meia-Idade , Proteína Adaptadora de Sinalização NOD2/metabolismo , Doença Pulmonar Obstrutiva Crônica/etiologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismoRESUMO
UNLABELLED: Pathological proliferation of human airway smooth muscle cells (HASMCs) causes hyperplasia in chronic lung diseases. Signaling pathways that link airway inflammation to HASMC proliferation might provide therapeutic targets for the prevention of airway remodeling and chronic lung diseases. Endothelin-1 (ET-1) signals via endothelin-A- and B-receptors (ETAR, ETBR) to perpetuate HASMC-associated and TNFα-dependent inflammatory processes. HYPOTHESIS: endothelin receptor antagonists (ERAs) suppress HASMC proliferation induced by inflammatory cytokines. HASMCs were stimulated ex vivo with cytokines in the presence or absence of ERAs (ETAR-specific/selective: BQ123, ambrisentan; ETBR-specific: BQ788; non-selective: bosentan, macitentan, ACT-132577) or cytokine-blocking antibodies. Cell counts, DNA-synthesis (BrdU-incorporation assay), cytokine production (ELISA) and ETBR expression (whole-genome microarray data, western blot) were analyzed. ET-1-induced HASMC proliferation and DNA-synthesis were reduced by protein kinase inhibitors and ETAR-specific/selective ERAs but not by BQ788. TNFα-induced HASMC proliferation and DNA-synthesis were reduced by all ERAs. TNFα induced ET-1 and ETBR expression. TNFα- and ET-1-induced GM-CSF releases were both reduced by BQ123 and BQ788. TNFα- and ET-1-induced IL-6 releases were both reduced by BQ123 but not by BQ788. Combined but not single blockade of GM-CSF-receptor-α-chain and IL-6 reduced TNFα- and ET-1-induced HASMC proliferation and DNA-synthesis. Combined but not single treatment with GM-CSF and IL-6 induced HASMC proliferation and DNA-synthesis in the presence of ET-1. In conclusion, TNFα induces HASMC proliferation via ET-1/GM-CSF/IL-6. ETBR requires up-regulation by TNFα to mediate ET-1 effects on HASMC proliferation. This signaling cascade links airway inflammation to HASMC-associated remodeling processes and is sensitive to ERAs. Therefore, ERAs could prevent inflammation-induced airway smooth muscle hyperplasia.
Assuntos
Brônquios/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Interleucina-6/metabolismo , Músculo Liso/metabolismo , Receptor de Endotelina A/metabolismo , Receptor de Endotelina B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Anticorpos Bloqueadores/farmacologia , Biomarcadores/metabolismo , Brônquios/efeitos dos fármacos , Brônquios/imunologia , Brônquios/patologia , Neoplasias Brônquicas/imunologia , Neoplasias Brônquicas/metabolismo , Neoplasias Brônquicas/patologia , Neoplasias Brônquicas/cirurgia , Carcinoma/imunologia , Carcinoma/metabolismo , Carcinoma/patologia , Carcinoma/cirurgia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Replicação do DNA/efeitos dos fármacos , Antagonistas dos Receptores de Endotelina/farmacologia , Endotelina-1/agonistas , Endotelina-1/genética , Endotelina-1/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/agonistas , Fator Estimulador de Colônias de Granulócitos e Macrófagos/antagonistas & inibidores , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Humanos , Hiperplasia/imunologia , Hiperplasia/metabolismo , Hiperplasia/patologia , Hiperplasia/prevenção & controle , Interleucina-6/agonistas , Interleucina-6/antagonistas & inibidores , Interleucina-6/genética , Músculo Liso/efeitos dos fármacos , Músculo Liso/imunologia , Músculo Liso/patologia , Inibidores de Proteínas Quinases/farmacologia , Receptor de Endotelina A/agonistas , Receptor de Endotelina A/química , Receptor de Endotelina A/genética , Receptor de Endotelina B/agonistas , Receptor de Endotelina B/química , Receptor de Endotelina B/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/genéticaRESUMO
T-cell-dependent airway and systemic inflammation triggers the progression of chronic obstructive pulmonary disease (COPD) and asthma. Retrospective studies suggest that simvastatin has anti-inflammatory effects in both diseases but it is unclear, which cell types are targeted. We hypothesized that simvastatin modulates T-cell activity. Circulating CD4+ and CD8+ T-cells, either pure, co-cultured with monocytes or alveolar macrophages (AM) or in peripheral blood mononuclear cells (PBMCs), were ex vivo activated towards Th1/Tc1 or Th2/Tc2 and incubated with simvastatin. Markers for Th1/Tc1 (IFNγ) and Th2/Tc2 (IL-5, IL-13) were measured by ELISA; with PBMCs this was done comparative between 11 healthy never-smokers, 11 current smokers without airflow limitation, 14 smokers with COPD and 11 never-smokers with atopic asthma. T-cell activation induced IFNγ, IL-5 and IL-13 in the presence and absence of accessory cells. Simvastatin did not modulate cytokine expression in pure T-cell fractions. ß-hydroxy-simvastatin acid (activated simvastatin) suppressed IL-5 and IL-13 in pure Th2- and Tc2-cells. Simvastatin suppressed IL-5 and IL-13 in Th2-cells co-cultivated with monocytes or AM, which was partially reversed by the carboxylesterase inhibitor benzil. Simvastatin suppressed IL-5 production of Th2/Tc2-cells in PBMCs without differences between cohorts and IL-13 stronger in never-smokers and asthma compared to COPD. Simvastatin induced IFNγ in Th1/Tc1-cells in PBMCs of all cohorts except asthmatics. Simvastatin requires activation in accessory cells likely by carboxylesterase to suppress IL-5 and IL-13 in Th2/Tc2-cells. The effects on Il-13 are partially reduced in COPD. Asthma pathogenesis prevents simvastatin-induced IFNγ up-regulation. Simvastatin has anti-inflammatory effects that could be of interest for asthma therapy.
Assuntos
Asma/imunologia , Doença Pulmonar Obstrutiva Crônica/imunologia , Sinvastatina/farmacologia , Asma/tratamento farmacológico , Carboxilesterase/metabolismo , Feminino , Humanos , Interferon gama/metabolismo , Interleucina-13/metabolismo , Interleucina-5/metabolismo , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Masculino , Pessoa de Meia-Idade , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Monócitos/metabolismo , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Sinvastatina/uso terapêutico , Fumar/efeitos adversos , Células Th1/efeitos dos fármacos , Células Th1/imunologia , Células Th1/metabolismo , Células Th2/efeitos dos fármacos , Células Th2/imunologia , Células Th2/metabolismoRESUMO
Smoking-induced COPD is characterized by chronic airway inflammation, which becomes enhanced by bacterial infections resulting in accelerated disease progression called exacerbation. Alveolar macrophages (AM) release endothelin-1 (ET-1), IL-6, CCL-2 and MMP-9, all of which are linked to COPD pathogenesis and exacerbation. ET-1 signals via ETA- and ETB-receptors (ETAR, ETBR). This is blocked by endothelin receptor antagonists (ERAs), like bosentan, which targets both receptors, ETAR-selective ambrisentan and ETBR-specific BQ788. Therefore, ERAs could have anti-inflammatory potential, which might be useful in COPD and other inflammatory lung diseases. We hypothesized that ERAs suppress cytokine release from AM of smokers and COPD subjects induced by lipopolysaccharide (LPS), the most important immunogen of gram-negative bacteria. AM were isolated from the broncho-alveolar lavage (BAL) of n=29 subjects (11 non-smokers, 10 current smokers without COPD, 8 smokers with COPD), cultivated and stimulated with LPS in the presence or absence of ERAs. Cytokines were measured by ELISA. Endothelin receptor expression was investigated by RT-PCR and western blot. AM expressed ETAR and ETBR mRNA, but only ETBR protein was detected. LPS and ET-1 both induced IL-6, CCL-2 and MMP-9. LPS-induced IL-6 release was increased in COPD versus non-smokers and smokers. Bosentan, ambrisentan and BQ788 all partially reduced all cytokines without differences between cohorts. Specific ETBR inhibition was most effective. LPS induced ET-1, which was exclusively blocked by BQ788. In conclusion, LPS induces ET-1 release in AM, which in turn leads to CCL-2, IL-6 and MMP-9 expression rendering AM sensitive for ERAs. ERAs could have anti-inflammatory potential in smoking-induced COPD.
Assuntos
Citocinas/metabolismo , Antagonistas dos Receptores de Endotelina/farmacologia , Lipopolissacarídeos/farmacologia , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Fumar/metabolismo , Idoso , Bosentana , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/imunologia , Fumar/imunologia , Sulfonamidas/farmacologiaRESUMO
Evidence is lacking on the differential effects of the two therapeutic concepts of endothelin receptor antagonists (ERAs): the blockade of only the endothelin receptor A (ETAR; selective antagonism) versus both ETAR and endothelin receptor B (ETBR; dual blockade). Ambrisentan, a selective ERA, and bosentan, a dual blocker, are both available for therapy. We hypothesized that there are differences in the potential of ERAs to ameliorate inflammatory processes in human airway smooth muscle cells (HASMCs) and aimed to unravel underlying mechanisms. We used HASMC culture, enzyme-linked immunosorbent assay, and quantitative reverse-transcription polymerase chain reaction. Tumor necrosis factor α (TNFα) induced transcription and expression of chemokine (C-X-C motif) ligand 2 (CXCL2), chemokine (C-X-C motif) ligand 3 (CXCL3), granulocyte macrophage colony-stimulating factor (GM-CSF), and matrix metalloproteinase 12 (MMP12) in HASMCs. In concentration-response experiments, bosentan led to a significantly greater reduction of GM-CSF and MMP12 protein release than ambrisentan, whereas there was no significant difference in their effect on GM-CSF and MMP12 mRNA. Both ERAs reduced CXCL3 protein and mRNA equally but had no effect on CXCL2. Blocking mitogen-activated protein kinases revealed that both ETAR and ETBR signal through p38 mitogen-activated protein kinase, but ETBR also signals through extracellular signal-regulated kinase (ERK) 1/2 to induce GM-CSF expression. In the presence of the transcription inhibitor actinomycin D, bosentan, but not ambrisentan, reduced GM-CSF but not MMP12 or CXCL3 mRNA. In conclusion, blockade of each endothelin receptor subtype reduces GM-CSF transcription, but blocking ETBR additionally protects GM-CSF mRNA from degradation via ERK-1/2. Accordingly, blocking both ETAR and ETBR leads to a stronger reduction of TNFα-induced GM-CSF protein expression. This mechanism might be specific to GM-CSF. Our data stress the anti-inflammatory potential of ERA and warrant further investigation of their utility in chronic inflammatory airway diseases.