Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Cell Res ; 1871(1): 119572, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37659504

RESUMO

Heterozygous germline variants in ATP1A1, the gene encoding the α1 subunit of the Na+/K+-ATPase (NKA), have been linked to diseases including primary hyperaldosteronism and the peripheral neuropathy Charcot-Marie-Tooth disease (CMT). ATP1A1 variants that cause CMT induce loss-of-function of NKA. This heterodimeric (αß) enzyme hydrolyzes ATP to establish transmembrane electrochemical gradients of Na+ and K+ that are essential for electrical signaling and cell survival. Of the 4 catalytic subunit isoforms, α1 is ubiquitously expressed and is the predominant paralog in peripheral axons. Human population sequencing datasets indicate strong negative selection against both missense and protein-null ATP1A1 variants. To test whether haploinsufficiency generated by heterozygous protein-null alleles are sufficient to cause disease, we tested the neuromuscular characteristics of heterozygous Atp1a1+/- knockout mice and their wildtype littermates, while also evaluating if exercise increased CMT penetrance. We found that Atp1a1+/- mice were phenotypically normal up to 18 months of age. Consistent with the observations in mice, we report clinical phenotyping of a healthy adult human who lacks any clinical features of known ATP1A1-related diseases despite carrying a plasma-membrane protein-null early truncation variant, p.Y148*. Taken together, these results suggest that a malfunctioning gene product is required for disease induction by ATP1A1 variants and that if any pathology is associated with protein-null variants, they may display low penetrance or high age of onset.


Assuntos
Doença de Charcot-Marie-Tooth , ATPase Trocadora de Sódio-Potássio , Adulto , Animais , Humanos , Camundongos , Alelos , Doença de Charcot-Marie-Tooth/genética , Isoformas de Proteínas/genética , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo
2.
Brain ; 146(8): 3162-3171, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37043503

RESUMO

ATP1A3 encodes the α3 subunit of the sodium-potassium ATPase, one of two isoforms responsible for powering electrochemical gradients in neurons. Heterozygous pathogenic ATP1A3 variants produce several distinct neurological syndromes, yet the molecular basis for phenotypic variability is unclear. We report a novel recurrent variant, ATP1A3(NM_152296.5):c.2324C>T; p.(Pro775Leu), in nine individuals associated with the primary clinical features of progressive or non-progressive spasticity and developmental delay/intellectual disability. No patients fulfil diagnostic criteria for ATP1A3-associated syndromes, including alternating hemiplegia of childhood, rapid-onset dystonia-parkinsonism or cerebellar ataxia-areflexia-pes cavus-optic atrophy-sensorineural hearing loss (CAPOS), and none were suspected of having an ATP1A3-related disorder. Uniquely among known ATP1A3 variants, P775L causes leakage of sodium ions and protons into the cell, associated with impaired sodium binding/occlusion kinetics favouring states with fewer bound ions. These phenotypic and electrophysiologic studies demonstrate that ATP1A3:c.2324C>T; p.(Pro775Leu) results in mild ATP1A3-related phenotypes resembling complex hereditary spastic paraplegia or idiopathic spastic cerebral palsy. Cation leak provides a molecular explanation for this genotype-phenotype correlation, adding another mechanism to further explain phenotypic variability and highlighting the importance of biophysical properties beyond ion transport rate in ion transport diseases.


Assuntos
Ataxia Cerebelar , Deficiência Intelectual , Humanos , Mutação/genética , Síndrome , Deficiência Intelectual/genética , Ataxia Cerebelar/genética , Fenótipo , Espasticidade Muscular/genética , Cátions , ATPase Trocadora de Sódio-Potássio/genética
3.
Pediatr Neurol ; 73: 101-105, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28647130

RESUMO

BACKGROUND: We identified a group of patients with ATP1A3 mutations at residue 756 who display a new phenotype, distinct from alternating hemiplegia of childhood, rapid-onset dystonia-parkinsonism, and cerebellar ataxia, areflexia, pes cavus, optic atrophy, sensorineural hearing loss syndromes. METHODS: Four patients with c.2267G>A (R756H) mutations from two families and two patients with c.2267G>T (R756L) mutations from one family are described and compared with the previously reported patients with mutations resulting in R756H and R756C protein variants. RESULTS: Patients with ATP1A3 R756H have onset in childhood of infrequent, fever-triggered paroxysms of encephalopathy and weakness with slowly improving but persistent deficits. Motor findings of weakness are mostly generalized, and patients may also have bulbar or oculomotor problems. Longer-term outcomes range from mild motor apraxia with near-normal function to persistent dysphagia, dysarthria, cognitive deficit, motor apraxia, and inability to walk because of ataxia. Patients with ATP1A3 R756L have a similar phenotype that includes paroxysmal, stepwise progression of ataxia associated with infections. CONCLUSIONS: ATP1A3 mutations affecting residue 756 result in a clinical syndrome, separate from those associated with previously described ATP1A3 mutations, which consists chiefly of fever-induced paroxysmal weakness and encephalopathy (FIPWE). Patients with R756L and R756C protein variants display more prominent ataxia, overlapping with the relapsing encephalopathy with cerebellar ataxia syndrome previously described in a patient with the c.2266C>T (R756C) mutation. All patients reported with mutations at residue 756 to date have had a similar episodic course and clinical features. Patients with mutations of ATP1A3 residue 756 appear to have a distinct clinical phenotype compared with patients with other ATP1A3 mutations, with fever-induced encephalopathy as key differentiating feature.


Assuntos
Encefalopatias/etiologia , Febre/complicações , Febre/genética , Debilidade Muscular/complicações , Mutação/genética , ATPase Trocadora de Sódio-Potássio/genética , Criança , Saúde da Família , Feminino , Humanos , Masculino , Fenótipo
4.
Mol Microbiol ; 79(5): 1325-38, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21205014

RESUMO

Coliphage N4 infection leads to shut-off of host DNA replication without inhibition of host transcription or translation. We report the identification and characterization of gp8, the N4 gene product responsible for this phenotype. N4 gp8 is an Escherichia coli bacteriostatic inhibitor that colocalizes with the E. coli replisome in a replication-dependent manner. Gp8 was purified and observed to cross-link to complexes containing the replicative DNA polymerase, DNAP III, in vivo. Purified gp8 inhibits DNA polymerization by DNA polymerase III holoenzyme in vitro by interfering with polymerase processivity. Gp8 specifically inhibits the clamp-loading activity of DNAP III by targeting the delta subunit of the DNAP III clamp loader; E. coli mutations conferring gp8 resistance were identified in the holA gene, encoding delta. Delta and gp8 interact in vitro; no interaction was detected between gp8 inactive mutants and wild-type delta or between delta gp8-resistant mutants and wild-type gp8. Therefore, this work identifies the DNAP III clamp loader as a new target for inhibition of bacterial growth. Finally, we show that gp8 is not essential in N4 development under laboratory conditions, but its activity contributes to phage yield.


Assuntos
Bacteriófago N4/metabolismo , DNA Polimerase III/antagonistas & inibidores , Replicação do DNA , Proteínas de Escherichia coli/antagonistas & inibidores , Escherichia coli/enzimologia , Proteínas Estruturais Virais/metabolismo , Sequência de Aminoácidos , Bacteriófago N4/genética , DNA Polimerase III/genética , DNA Polimerase III/metabolismo , Regulação para Baixo , Escherichia coli/genética , Escherichia coli/virologia , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Dados de Sequência Molecular , Proteínas Estruturais Virais/genética
5.
BMC Evol Biol ; 5: 30, 2005 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-15876351

RESUMO

BACKGROUND: The chromosomes of higher plants are littered with retrotransposons that, in many cases, constitute as much as 80% of plant genomes. Long terminal repeat retrotransposons have been especially successful colonizers of the chromosomes of higher plants and examinations of their function, evolution, and dispersal are essential to understanding the evolution of eukaryotic genomes. In soybean, several families of retrotransposons have been identified, including at least two that, by virtue of the presence of an envelope-like gene, may constitute endogenous retroviruses. However, most elements are highly degenerate and are often sequestered in regions of the genome that sequencing projects initially shun. In addition, finding potentially functional copies from genomic DNA is rare. This study provides a mechanism to surmount these issues to generate a consensus sequence that can then be functionally and phylogenetically evaluated. RESULTS: Diaspora is a multicopy member of the Ty3-gypsy-like family of LTR retrotransposons and comprises at least 0.5% of the soybean genome. Although the Diaspora family is highly degenerate, and with the exception of this report, is not represented in the Genbank nr database, a full-length consensus sequence was generated from short overlapping sequences using a combination of experimental and in silico methods. Diaspora is 11,737 bp in length and contains a single 1892-codon ORF that encodes a gag-pol polyprotein. Phylogenetic analysis indicates that it is closely related to Athila and Calypso retroelements from Arabidopsis and soybean, respectively. These in turn form the framework of an endogenous retrovirus lineage whose members possess an envelope-like gene. Diaspora appears to lack any trace of this coding region. CONCLUSION: A combination of empirical sequencing and retrieval of unannotated Genome Survey Sequence database entries was successfully used to construct a full-length representative of the Diaspora family in Glycine max. Diaspora is presently the only fully characterized member of a lineage of putative plant endogenous retroviruses that contains virtually no trace of an extra coding region. The loss of an envelope-like coding domain suggests that non-infectious retrotransposons could swiftly evolve from infectious retroviruses, possibly by anomalous splicing of genomic RNA.


Assuntos
Glycine max/genética , Plantas/virologia , Retroelementos/genética , Retroviridae/genética , Arabidopsis/genética , Arabidopsis/virologia , Pareamento de Bases , Cromossomos de Plantas , Biologia Computacional , Primers do DNA/química , Etiquetas de Sequências Expressas , Genoma , Genoma de Planta , Modelos Genéticos , Família Multigênica , Fases de Leitura Aberta , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Software , Glycine max/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA