Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
NPJ Breast Cancer ; 7(1): 90, 2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34238931

RESUMO

Multiparametric assays for risk stratification are widely used in the management of both node negative and node positive hormone receptor positive invasive breast cancer. Recent data from multiple sources suggests that different tests may provide different risk estimates at the individual patient level. The TEAM pathology study consists of 3284 postmenopausal ER+ve breast cancers treated with endocrine therapy Using genes comprising the following multi-parametric tests OncotypeDx®, Prosigna™ and MammaPrint® signatures were trained to recapitulate true assay results. Patients were then classified into risk groups and survival assessed. Whilst likelihood χ2 ratios suggested limited value for combining tests, Kaplan-Meier and LogRank tests within risk groups suggested combinations of tests provided statistically significant stratification of potential clinical value. Paradoxically whilst Prosigna-trained results stratified Oncotype-trained subgroups across low and intermediate risk categories, only intermediate risk Prosigna-trained cases were further stratified by Oncotype-trained results. Both Oncotype-trained and Prosigna-trained results further stratified MammaPrint-trained low risk cases, and MammaPrint-trained results also stratified Oncotype-trained low and intermediate risk groups but not Prosigna-trained results. Comparisons between existing multiparametric tests are challenging, and evidence on discordance between tests in risk stratification presents further dilemmas. Detailed analysis of the TEAM pathology study suggests a complex inter-relationship between test results in the same patient cohorts which requires careful evaluation regarding test utility. Further prognostic improvement appears both desirable and achievable.

2.
PLoS One ; 15(9): e0238593, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32881987

RESUMO

Multiparametric assays for risk stratification are widely used in the management of breast cancer, with applications being developed for a number of other cancer settings. Recent data from multiple sources suggests that different tests may provide different risk estimates at the individual patient level. There is an increasing need for robust methods to support cost effective comparisons of test performance in multiple settings. The derivation of similar risk classifications using genes comprising the following multi-parametric tests Oncotype DX® (Genomic Health.), Prosigna™ (NanoString Technologies, Inc.), MammaPrint® (Agendia Inc.) was performed using different computational approaches. Results were compared to the actual test results. Two widely used approaches were applied, firstly computational "modelling" of test results using published algorithms and secondly a "training" approach which used reference results from the commercially supplied tests. We demonstrate the potential for errors to arise when using a "modelling" approach without reference to real world test results. Simultaneously we show that a "training" approach can provide a highly cost-effective solution to the development of real-world comparisons between different multigene signatures. Comparisons between existing multiparametric tests is challenging, and evidence on discordance between tests in risk stratification presents further dilemmas. We present an approach, modelled in breast cancer, which can provide health care providers and researchers with the potential to perform robust and meaningful comparisons between multigene tests in a cost-effective manner. We demonstrate that whilst viable estimates of gene signatures can be derived from modelling approaches, in our study using a training approach allowed a close approximation to true signature results.


Assuntos
Neoplasias da Mama , Perfilação da Expressão Gênica/métodos , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Simulação por Computador , Análise Custo-Benefício , Feminino , Perfilação da Expressão Gênica/economia , Genômica , Humanos , Prognóstico , Ensaios Clínicos Controlados Aleatórios como Assunto
3.
J Natl Cancer Inst ; 112(3): 247-255, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31161221

RESUMO

BACKGROUND: The development of noninvasive tests for the early detection of aggressive prostate tumors is a major unmet clinical need. miRNAs are promising noninvasive biomarkers: they play essential roles in tumorigenesis, are stable under diverse analytical conditions, and can be detected in body fluids. METHODS: We measured the longitudinal stability of 673 miRNAs by collecting serial urine samples from 10 patients with localized prostate cancer. We then measured temporally stable miRNAs in an independent training cohort (n = 99) and created a biomarker predictive of Gleason grade using machine-learning techniques. Finally, we validated this biomarker in an independent validation cohort (n = 40). RESULTS: We found that each individual has a specific urine miRNA fingerprint. These fingerprints are temporally stable and associated with specific biological functions. We identified seven miRNAs that were stable over time within individual patients and integrated them with machine-learning techniques to create a novel biomarker for prostate cancer that overcomes interindividual variability. Our urine biomarker robustly identified high-risk patients and achieved similar accuracy as tissue-based prognostic markers (area under the receiver operating characteristic = 0.72, 95% confidence interval = 0.69 to 0.76 in the training cohort, and area under the receiver operating characteristic curve = 0.74, 95% confidence interval = 0.55 to 0.92 in the validation cohort). CONCLUSIONS: These data highlight the importance of quantifying intra- and intertumoral heterogeneity in biomarker development. This noninvasive biomarker may usefully supplement invasive or expensive radiologic- and tissue-based assays.


Assuntos
MicroRNAs/genética , MicroRNAs/urina , Neoplasias da Próstata/genética , Neoplasias da Próstata/urina , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/urina , Carcinogênese , Estudos de Coortes , Humanos , Estudos Longitudinais , Masculino , Gradação de Tumores , Prognóstico , Neoplasias da Próstata/patologia , Reprodutibilidade dos Testes , Transcriptoma
4.
Nat Med ; 25(10): 1615-1626, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31591588

RESUMO

Oncogenesis is driven by germline, environmental and stochastic factors. It is unknown how these interact to produce the molecular phenotypes of tumors. We therefore quantified the influence of germline polymorphisms on the somatic epigenome of 589 localized prostate tumors. Predisposition risk loci influence a tumor's epigenome, uncovering a mechanism for cancer susceptibility. We identified and validated 1,178 loci associated with altered methylation in tumoral but not nonmalignant tissue. These tumor methylation quantitative trait loci influence chromatin structure, as well as RNA and protein abundance. One prominent tumor methylation quantitative trait locus is associated with AKT1 expression and is predictive of relapse after definitive local therapy in both discovery and validation cohorts. These data reveal intricate crosstalk between the germ line and the epigenome of primary tumors, which may help identify germline biomarkers of aggressive disease to aid patient triage and optimize the use of more invasive or expensive diagnostic assays.


Assuntos
Metilação de DNA/genética , Epigenoma/genética , Mutação em Linhagem Germinativa/genética , Neoplasias da Próstata/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Genoma Humano/genética , Humanos , Masculino , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-akt/genética , Locos de Características Quantitativas/genética
5.
PLoS One ; 14(8): e0219747, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31386671

RESUMO

Alternative splicing is a co-transcriptional mechanism that generates protein diversity by including or excluding exons in different combinations, thereby expanding the diversity of protein isoforms of a single gene. Abnormalities in this process can result in deleterious effects to human health, and several xenobiotics are known to interfere with splicing regulation through multiple mechanisms. These changes could lead to human diseases such as cancer, neurological disorders, autoimmune diseases, and developmental disorders. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is an environmental contaminant generated as a byproduct of various industrial activities. Exposure to this dioxin has been linked to a wide range of pathologies through the alteration of multiple cellular processes. However, the effects of TCDD exposure on alternative splicing have not yet been studied. Here, we investigated whether a single po. dose of 5 µg/kg or 500 µg/kg TCDD influence hepatic alternative splicing in adult male C57BL/6Kou mouse. We identified several genes whose alternative splicing of precursor messenger RNAs was modified following TCDD exposure. In particular, we demonstrated that alternative splicing of Cyp1a1, Ahrr, and Actn1 was significantly altered after TCDD treatment. These findings show that the exposure to TCDD has an impact on alternative-splicing, and suggest a new avenue for understanding TCDD-mediated toxicity and pathogenesis.


Assuntos
Processamento Alternativo/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Fígado/efeitos dos fármacos , Fígado/metabolismo , Dibenzodioxinas Policloradas/toxicidade , Animais , Relação Dose-Resposta a Droga , Masculino , Camundongos , Camundongos Endogâmicos C57BL
6.
Cancer Cell ; 35(3): 414-427.e6, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30889379

RESUMO

DNA sequencing has identified recurrent mutations that drive the aggressiveness of prostate cancers. Surprisingly, the influence of genomic, epigenomic, and transcriptomic dysregulation on the tumor proteome remains poorly understood. We profiled the genomes, epigenomes, transcriptomes, and proteomes of 76 localized, intermediate-risk prostate cancers. We discovered that the genomic subtypes of prostate cancer converge on five proteomic subtypes, with distinct clinical trajectories. ETS fusions, the most common alteration in prostate tumors, affect different genes and pathways in the proteome and transcriptome. Globally, mRNA abundance changes explain only ∼10% of protein abundance variability. As a result, prognostic biomarkers combining genomic or epigenomic features with proteomic ones significantly outperform biomarkers comprised of a single data type.


Assuntos
Neoplasias da Próstata/patologia , Proteogenômica/métodos , Proteínas Proto-Oncogênicas c-ets/genética , Proteínas Proto-Oncogênicas c-ets/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Epigenômica , Perfilação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Translocação Genética , Sequenciamento Completo do Genoma
7.
Nat Genet ; 51(2): 308-318, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30643250

RESUMO

Many primary-tumor subregions have low levels of molecular oxygen, termed hypoxia. Hypoxic tumors are at elevated risk for local failure and distant metastasis, but the molecular hallmarks of tumor hypoxia remain poorly defined. To fill this gap, we quantified hypoxia in 8,006 tumors across 19 tumor types. In ten tumor types, hypoxia was associated with elevated genomic instability. In all 19 tumor types, hypoxic tumors exhibited characteristic driver-mutation signatures. We observed widespread hypoxia-associated dysregulation of microRNAs (miRNAs) across cancers and functionally validated miR-133a-3p as a hypoxia-modulated miRNA. In localized prostate cancer, hypoxia was associated with elevated rates of chromothripsis, allelic loss of PTEN and shorter telomeres. These associations are particularly enriched in polyclonal tumors, representing a constellation of features resembling tumor nimbosus, an aggressive cellular phenotype. Overall, this work establishes that tumor hypoxia may drive aggressive molecular features across cancers and shape the clinical trajectory of individual tumors.


Assuntos
Hipóxia/genética , Neoplasias da Próstata/genética , Hipóxia Tumoral/genética , Alelos , Linhagem Celular Tumoral , Cromotripsia , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/genética , Instabilidade Genômica/genética , Humanos , Masculino , MicroRNAs/genética , Células PC-3 , PTEN Fosfo-Hidrolase/genética , Telômero/genética
8.
JCO Precis Oncol ; 3: 1-13, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35100692

RESUMO

PURPOSE: Hormone receptor-positive breast cancer remains an ongoing therapeutic challenge, despite optimal anti-endocrine therapies. In this study, we assessed the prognostic ability of genomic signatures to identify patients at risk for recurrence after endocrine therapy. Analysis was performed on the basis of an a priori hypothesis related to molecular pathways, which might predict response to existing targeted therapies. PATIENTS AND METHODS: A subset of patients from the Tamoxifen Versus Exemestane Adjuvant Multinational trial (ClinicalTrials.gov identifiers: NCT00279448 and NCT00032136, and NCT00036270) pathology cohort were analyzed to determine the prognostic ability of mutational and copy number aberration biomarkers that represent the cyclin D/cyclin-dependent kinase (CCND/CDK), fibroblast growth factor receptor/fibroblast growth factor (FGFR/FGF), and phosphatidylinositol 3-kinase/protein kinase B (PI3K/ATK) pathways to inform the potential choice of additional therapies to standard endocrine treatment. Copy number analysis and targeted sequencing was performed. Pathways were identified as aberrant if there were copy number aberrations and/or mutations in any of the predetermined pathway genes: CCND1/CCND2/CCND3/CDK4/CDK6, FGFR1/FGFR2/FGFR2/FGFR4, and AKT1/AKT2/PIK3CA/PTEN. RESULTS: The 390 of 420 samples that passed quality control were analyzed for distant metastasis-free survival between groups. Patients with no changes in the CCND/CDK pathway experienced a better distant metastasis-free survival (hazard ratio, 1.94; 95% CI, 1.45 to 2.61; P < .001) than those who possessed aberrations. In the FGFR/FGF and PI3K/AKT pathways, a similar outcome was observed (hazard ratio, 1.43 [95% CI, 1.07 to 1.92; P = .017] and 1.34 [95% CI, 1.00 to 1.81; P = .053], respectively). CONCLUSION: We show that aberrations of genes in these pathways are independently linked to a higher risk of relapse after endocrine treatment. Improvement of the clinical management of early breast cancers could be made by identifying those for whom current endocrine therapies are sufficient, thus reducing unnecessary treatment, and secondly, by identifying those who are at high risk for recurrence and linking molecular features that drive these cancers to treatment with targeted therapies.

9.
Nat Commun ; 9(1): 4746, 2018 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-30420699

RESUMO

Biomarkers lie at the heart of precision medicine. Surprisingly, while rapid genomic profiling is becoming ubiquitous, the development of biomarkers usually involves the application of bespoke techniques that cannot be directly applied to other datasets. There is an urgent need for a systematic methodology to create biologically-interpretable molecular models that robustly predict key phenotypes. Here we present SIMMS (Subnetwork Integration for Multi-Modal Signatures): an algorithm that fragments pathways into functional modules and uses these to predict phenotypes. We apply SIMMS to multiple data types across five diseases, and in each it reproducibly identifies known and novel subtypes, and makes superior predictions to the best bespoke approaches. To demonstrate its ability on a new dataset, we profile 33 genes/nodes of the PI3K pathway in 1734 FFPE breast tumors and create a four-subnetwork prediction model. This model out-performs a clinically-validated molecular test in an independent cohort of 1742 patients. SIMMS is generic and enables systematic data integration for robust biomarker discovery.


Assuntos
Algoritmos , Biomarcadores Tumorais/análise , Redes e Vias Metabólicas , Neoplasias/metabolismo , Benchmarking , Proliferação de Células , Humanos , Transdução de Sinais , Resultado do Tratamento
10.
Cell ; 174(3): 564-575.e18, 2018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-30033362

RESUMO

The prostate cancer (PCa) risk-associated SNP rs11672691 is positively associated with aggressive disease at diagnosis. We showed that rs11672691 maps to the promoter of a short isoform of long noncoding RNA PCAT19 (PCAT19-short), which is in the third intron of the long isoform (PCAT19-long). The risk variant is associated with decreased and increased levels of PCAT19-short and PCAT19-long, respectively. Mechanistically, the risk SNP region is bifunctional with both promoter and enhancer activity. The risk variants of rs11672691 and its LD SNP rs887391 decrease binding of transcription factors NKX3.1 and YY1 to the promoter of PCAT19-short, resulting in weaker promoter but stronger enhancer activity that subsequently activates PCAT19-long. PCAT19-long interacts with HNRNPAB to activate a subset of cell-cycle genes associated with PCa progression, thereby promoting PCa tumor growth and metastasis. Taken together, these findings reveal a risk SNP-mediated promoter-enhancer switching mechanism underlying both initiation and progression of aggressive PCa.


Assuntos
Neoplasias da Próstata/genética , RNA Longo não Codificante/genética , Alelos , Linhagem Celular Tumoral , Elementos Facilitadores Genéticos/genética , Regulação Neoplásica da Expressão Gênica/genética , Frequência do Gene/genética , Predisposição Genética para Doença/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Masculino , Polimorfismo de Nucleotídeo Único/genética , Regiões Promotoras Genéticas/genética , Ligação Proteica , Isoformas de RNA/genética , Fatores de Risco , Fatores de Transcrição/metabolismo , Fator de Transcrição YY1/metabolismo
11.
J Ovarian Res ; 11(1): 27, 2018 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-29618387

RESUMO

BACKGROUND: Ovarian cancer is the leading gynecologic cancer diagnosed in North America and because related symptoms are not disease specific, this often leads to late detection, an advanced disease state, and the need for chemotherapy. Ovarian cancer is frequently sensitive to chemotherapy at diagnosis but rapid development of drug resistance leads to disease progression and ultimately death in the majority of patients. RESULTS: We have generated paclitaxel resistant ovarian cell lines from their corresponding native cell lines to determine driver mechanisms of drug resistance using gene expression arrays. These paclitaxel resistant ovarian cells demonstrate: (1) Increased IC50 for paclitaxel and docetaxel (10 to 75-fold) and cross-resistance to anthracyclines (2) Reduced cell apoptosis in the presence of paclitaxel (3) Gene depletion involving mitotic regulators BUB1 mitotic checkpoint serine/threonine kinase, cyclin BI (CCNB1), centromere protein E (CENPE), and centromere protein F (CENPF), and (4) Functional data validating gene depletion among mitotic regulators. CONCLUSIONS: We have generated model systems to explore drug resistance in ovarian cancer, which have revealed a key pathway related to the spindle assembly checkpoint underlying paclitaxel resistance in ovarian cell lines.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Neoplasias Ovarianas/metabolismo , Paclitaxel/farmacologia , Fuso Acromático/metabolismo , Apoptose/efeitos dos fármacos , Biomarcadores , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Estimativa de Kaplan-Meier , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase M do Ciclo Celular/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/mortalidade , Transdução de Sinais/efeitos dos fármacos
12.
Bioinformatics ; 34(6): 1034-1036, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29112706

RESUMO

Summary: The NanoString System is a well-established technology for measuring RNA and DNA abundance. Although it can estimate copy number variation, relatively few tools support analysis of these data. To address this gap, we created NanoStringNormCNV, an R package for pre-processing and copy number variant calling from NanoString data. This package implements algorithms for pre-processing, quality-control, normalization and copy number variation detection. A series of reporting and data visualization methods support exploratory analyses. To demonstrate its utility, we apply it to a new dataset of 96 genes profiled on 41 prostate tumour and 24 matched normal samples. Availability and implementation: NanoStringNormCNV is implemented in R and is freely available at http://labs.oicr.on.ca/boutros-lab/software/nanostringnormcnv. Contact: paul.boutros@oicr.on.ca. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Variações do Número de Cópias de DNA , Análise de Sequência de DNA/métodos , Software , Algoritmos , Genômica/métodos , Humanos , Masculino , Neoplasias da Próstata/genética , Controle de Qualidade
13.
NPJ Breast Cancer ; 3: 3, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28649643

RESUMO

Many women with hormone receptor-positive early breast cancer can be managed effectively with endocrine therapies alone. However, additional systemic chemotherapy treatment is necessary for others. The clinical challenges in managing high-risk women are to identify existing and novel druggable targets, and to identify those who would benefit from these therapies. Therefore, we performed mRNA abundance analysis using the Tamoxifen and Exemestane Adjuvant Multinational (TEAM) trial pathology cohort to identify a signature of residual risk following endocrine therapy and pathways that are potentially druggable. A panel of genes compiled from academic and commercial multiparametric tests as well as genes of importance to breast cancer pathogenesis was used to profile 3825 patients. A signature of 95 genes, including nodal status, was validated to stratify endocrine-treated patients into high-risk and low-risk groups based on distant relapse-free survival (DRFS; Hazard Ratio = 5.05, 95% CI 3.53-7.22, p = 7.51 × 10-19). This risk signature was also found to perform better than current multiparametric tests. When the 95-gene prognostic signature was applied to all patients in the validation cohort, including patients who received adjuvant chemotherapy, the signature remained prognostic (HR = 4.76, 95% CI 3.61-6.28, p = 2.53× 10-28). Functional gene interaction analyses identified six significant modules representing pathways involved in cell cycle control, mitosis and receptor tyrosine signaling; containing a number of genes with existing targeted therapies for use in breast or other malignancies. Thus the identification of high-risk patients using this prognostic signature has the potential to also prioritize patients for treatment with these targeted therapies.

14.
Eur Urol ; 72(1): 22-31, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-27815082

RESUMO

BACKGROUND: Localized prostate cancer is clinically heterogeneous, despite clinical risk groups that represent relative prostate cancer-specific mortality. We previously developed a 100-locus DNA classifier capable of substratifying patients at risk of biochemical relapse within clinical risk groups. OBJECTIVE: The 100-locus genomic classifier was refined to 31 functional loci and tested with standard clinical variables for the ability to predict biochemical recurrence (BCR) and metastasis. DESIGN, SETTING, AND PARTICIPANTS: Four retrospective cohorts of radical prostatectomy specimens from patients with localized disease were pooled, and an additional 102-patient cohort used to measure the 31-locus genomic classifier with the NanoString platform. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: The genomic classifier scores were tested for their ability to predict BCR (n=563) and metastasis (n=154), and compared with clinical risk stratification schemes. RESULTS AND LIMITATIONS: The 31-locus genomic classifier performs similarly to the 100-locus classifier. It identifies patients with elevated BCR rates (hazard ratio=2.73, p<0.001) and patients that eventually develop metastasis (hazard ratio=7.79, p<0.001). Combining the genomic classifier with standard clinical variables outperforms clinical models. Finally, the 31-locus genomic classifier was implemented using a NanoString assay. The study is limited to retrospective cohorts. CONCLUSIONS: The 100-locus and 31-locus genomic classifiers reliably identify a cohort of men with localized disease who have an elevated risk of failure. The NanoString assay will be useful for selecting patients for treatment deescalation or escalation in prospective clinical trials based on clinico-genomic scores from pretreatment biopsies. PATIENT SUMMARY: It is challenging to determine whether tumors confined to the prostate are aggressive, leading to significant undertreatment and overtreatment. We validated a test based on prostate tumor DNA that improves estimations of relapse risk, and that can help guide treatment planning.


Assuntos
Biomarcadores Tumorais/genética , Perfilação da Expressão Gênica/métodos , Neoplasias da Próstata/genética , Transcriptoma , Tomada de Decisão Clínica , Variações do Número de Cópias de DNA , Técnicas de Apoio para a Decisão , Progressão da Doença , Dosagem de Genes , Humanos , Masculino , Gradação de Tumores , Metástase Neoplásica , Recidiva Local de Neoplasia , Estadiamento de Neoplasias , Valor Preditivo dos Testes , Prostatectomia , Neoplasias da Próstata/classificação , Neoplasias da Próstata/patologia , Neoplasias da Próstata/cirurgia , Reprodutibilidade dos Testes , Estudos Retrospectivos , Medição de Risco , Fatores de Risco , Fatores de Tempo , Resultado do Tratamento
15.
Nat Genet ; 48(10): 1142-50, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27526323

RESUMO

Long noncoding RNAs (lncRNAs) represent an attractive class of candidates to mediate cancer risk. Through integrative analysis of the lncRNA transcriptome with genomic data and SNP data from prostate cancer genome-wide association studies (GWAS), we identified 45 candidate lncRNAs associated with risk to prostate cancer. We further evaluated the mechanism underlying the top hit, PCAT1, and found that a risk-associated variant at rs7463708 increases binding of ONECUT2, a novel androgen receptor (AR)-interacting transcription factor, at a distal enhancer that loops to the PCAT1 promoter, resulting in upregulation of PCAT1 upon prolonged androgen treatment. In addition, PCAT1 interacts with AR and LSD1 and is required for their recruitment to the enhancers of GNMT and DHCR24, two androgen late-response genes implicated in prostate cancer development and progression. PCAT1 promotes prostate cancer cell proliferation and tumor growth in vitro and in vivo. These findings suggest that modulating lncRNA expression is an important mechanism for risk-associated SNPs in promoting prostate transformation.


Assuntos
Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Neoplasias da Próstata/genética , RNA Longo não Codificante , Animais , Linhagem Celular Tumoral , Cromatina/metabolismo , Elementos Facilitadores Genéticos , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , RNA Longo não Codificante/genética , Receptores Androgênicos/metabolismo , Fatores de Risco , Transdução de Sinais , Fatores de Transcrição/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Nat Commun ; 7: 11906, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27350604

RESUMO

Biomarkers are rapidly gaining importance in personalized medicine. Although numerous molecular signatures have been developed over the past decade, there is a lack of overlap and many biomarkers fail to validate in independent patient cohorts and hence are not useful for clinical application. For these reasons, identification of novel and robust biomarkers remains a formidable challenge. We combine targeted proteomics with computational biology to discover robust proteomic signatures for prostate cancer. Quantitative proteomics conducted in expressed prostatic secretions from men with extraprostatic and organ-confined prostate cancers identified 133 differentially expressed proteins. Using synthetic peptides, we evaluate them by targeted proteomics in a 74-patient cohort of expressed prostatic secretions in urine. We quantify a panel of 34 candidates in an independent 207-patient cohort. We apply machine-learning approaches to develop clinical predictive models for prostate cancer diagnosis and prognosis. Our results demonstrate that computationally guided proteomics can discover highly accurate non-invasive biomarkers.


Assuntos
Biomarcadores/urina , Neoplasias da Próstata/urina , Humanos , Biópsia Líquida , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Próstata/patologia , Neoplasias da Próstata/patologia , Proteoma , Proteômica
17.
Oncotarget ; 7(31): 49099-49106, 2016 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-27056899

RESUMO

Recent evidence demonstrated CIN4 as a predictive marker of anthracycline benefit in early breast cancer. An analysis of the NCIC CTG MA.21 clinical trial was performed to test the role of existing CIN gene expression signatures as prognostic and predictive markers in the context of taxane based chemotherapy.RNA was extracted from patients in cyclophosphamide, epirubicin and flurouracil (CEF) and epirubicin, cyclophosphamide and paclitaxel (EC/T) arms of the NCIC CTG MA.21 trial and analysed using NanoString technology.After multivariate analysis both high CIN25 and CIN70 score was significantly associated with an increased in RFS (HR 1.76, 95%CI 1.07-2.86, p=0.0018 and HR 1.59, 95%CI 1.12-2.25, p=0.0096 respectively). Patients whose tumours had low CIN4 gene expression scores were associated with an increase in RFS (HR: 0.64, 95% CI 0.39-1.03, p=0.06) when treated with EC/T compared to patients treated with CEF.In conclusion we have demonstrated CIN25 and CIN70 as prognostic markers in breast cancer and that CIN4 is a potential predictive maker of benefit from taxane treatment.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Instabilidade Cromossômica , Taxoides/química , Adulto , Idoso , Antraciclinas/uso terapêutico , Antibióticos Antineoplásicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/metabolismo , Quimioterapia Adjuvante , Ciclofosfamida/administração & dosagem , Intervalo Livre de Doença , Epirubicina/administração & dosagem , Feminino , Fluoruracila/administração & dosagem , Perfilação da Expressão Gênica , Humanos , Pessoa de Meia-Idade , Paclitaxel/administração & dosagem , Prognóstico
18.
Breast Cancer Res ; 18(1): 16, 2016 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-26852132

RESUMO

BACKGROUND: Drug resistance in breast cancer is the major obstacle to effective treatment with chemotherapy. While upregulation of multidrug resistance genes is an important component of drug resistance mechanisms in vitro, their clinical relevance remains to be determined. Therefore, identifying pathways that could be targeted in the clinic to eliminate anthracycline-resistant breast cancer remains a major challenge. METHODS: We generated paired native and epirubicin-resistant MDA-MB-231, MCF7, SKBR3 and ZR-75-1 epirubicin-resistant breast cancer cell lines to identify pathways contributing to anthracycline resistance. Native cell lines were exposed to increasing concentrations of epirubicin until resistant cells were generated. To identify mechanisms driving epirubicin resistance, we used a complementary approach including gene expression analyses to identify molecular pathways involved in resistance, and small-molecule inhibitors to reverse resistance. In addition, we tested its clinical relevance in a BR9601 adjuvant clinical trial. RESULTS: Characterisation of epirubicin-resistant cells revealed that they were cross-resistant to doxorubicin and SN-38 and had alterations in apoptosis and cell-cycle profiles. Gene expression analysis identified deregulation of histone H2A and H2B genes in all four cell lines. Histone deacetylase small-molecule inhibitors reversed resistance and were cytotoxic for epirubicin-resistant cell lines, confirming that histone pathways are associated with epirubicin resistance. Gene expression of a novel 18-gene histone pathway module analysis of the BR9601 adjuvant clinical trial revealed that patients with low expression of the 18-gene histone module benefited from anthracycline treatment more than those with high expression (hazard ratio 0.35, 95 % confidence interval 0.13-0.96, p = 0.042). CONCLUSIONS: This study revealed a key pathway that contributes to anthracycline resistance and established model systems for investigating drug resistance in all four major breast cancer subtypes. As the histone modification can be targeted with small-molecule inhibitors, it represents a possible means of reversing clinical anthracycline resistance. TRIAL REGISTRATION: ClinicalTrials.gov identifier NCT00003012 . Registered on 1 November 1999.


Assuntos
Antraciclinas/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/genética , Histonas/biossíntese , Adulto , Apoptose/efeitos dos fármacos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Camptotecina/administração & dosagem , Camptotecina/análogos & derivados , Doxorrubicina/administração & dosagem , Epirubicina/administração & dosagem , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inibidores de Histona Desacetilases/administração & dosagem , Histonas/genética , Humanos , Irinotecano , Células MCF-7 , Pessoa de Meia-Idade , Transdução de Sinais/efeitos dos fármacos , Adulto Jovem
19.
Cancer Med ; 4(1): 56-64, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25314936

RESUMO

Ovarian carcinoma is the leading cause of gynecological malignancy, with the serous subtype being the most commonly presented subtype. Recent studies have demonstrated that grade does not yield significant prognostic information, independent of TNM staging. As such, several different grading systems have been proposed to reveal morphological characteristics of these tumors, however each yield different results. To help address this issue, we performed a rigorous computational analysis to better understand the molecular differences that fundamentally explain the different grades and grading systems. mRNA abundance levels were analyzed across 334 total patients and their association with each grade and grading system were assessed. Few molecular differences were observed between grade 2 and 3 tumors when using the International Federation of Gynecology and Obstetrics (FIGO) grading system, suggesting their molecular similarity. In contrast, grading by the Silverberg system reveals that grades 1-3 are molecularly equidistant from one another across a spectrum. Additionally, we have identified a few candidate genes with good prognostic information that could potentially be used for classifying cases with similar morphological appearances.


Assuntos
Perfilação da Expressão Gênica , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Transcriptoma , Adulto , Idoso , Análise por Conglomerados , Biologia Computacional , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/mortalidade , Prognóstico , RNA Mensageiro/genética , Transdução de Sinais
20.
Lancet Oncol ; 15(13): 1521-1532, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25456371

RESUMO

BACKGROUND: Clinical prognostic groupings for localised prostate cancers are imprecise, with 30-50% of patients recurring after image-guided radiotherapy or radical prostatectomy. We aimed to test combined genomic and microenvironmental indices in prostate cancer to improve risk stratification and complement clinical prognostic factors. METHODS: We used DNA-based indices alone or in combination with intra-prostatic hypoxia measurements to develop four prognostic indices in 126 low-risk to intermediate-risk patients (Toronto cohort) who will receive image-guided radiotherapy. We validated these indices in two independent cohorts of 154 (Memorial Sloan Kettering Cancer Center cohort [MSKCC] cohort) and 117 (Cambridge cohort) radical prostatectomy specimens from low-risk to high-risk patients. We applied unsupervised and supervised machine learning techniques to the copy-number profiles of 126 pre-image-guided radiotherapy diagnostic biopsies to develop prognostic signatures. Our primary endpoint was the development of a set of prognostic measures capable of stratifying patients for risk of biochemical relapse 5 years after primary treatment. FINDINGS: Biochemical relapse was associated with indices of tumour hypoxia, genomic instability, and genomic subtypes based on multivariate analyses. We identified four genomic subtypes for prostate cancer, which had different 5-year biochemical relapse-free survival. Genomic instability is prognostic for relapse in both image-guided radiotherapy (multivariate analysis hazard ratio [HR] 4·5 [95% CI 2·1-9·8]; p=0·00013; area under the receiver operator curve [AUC] 0·70 [95% CI 0·65-0·76]) and radical prostatectomy (4·0 [1·6-9·7]; p=0·0024; AUC 0·57 [0·52-0·61]) patients with prostate cancer, and its effect is magnified by intratumoral hypoxia (3·8 [1·2-12]; p=0·019; AUC 0·67 [0·61-0·73]). A novel 100-loci DNA signature accurately classified treatment outcome in the MSKCC low-risk to intermediate-risk cohort (multivariate analysis HR 6·1 [95% CI 2·0-19]; p=0·0015; AUC 0·74 [95% CI 0·65-0·83]). In the independent MSKCC and Cambridge cohorts, this signature identified low-risk to high-risk patients who were most likely to fail treatment within 18 months (combined cohorts multivariate analysis HR 2·9 [95% CI 1·4-6·0]; p=0·0039; AUC 0·68 [95% CI 0·63-0·73]), and was better at predicting biochemical relapse than 23 previously published RNA signatures. INTERPRETATION: This is the first study of cancer outcome to integrate DNA-based and microenvironment-based failure indices to predict patient outcome. Patients exhibiting these aggressive features after biopsy should be entered into treatment intensification trials. FUNDING: Movember Foundation, Prostate Cancer Canada, Ontario Institute for Cancer Research, Canadian Institute for Health Research, NIHR Cambridge Biomedical Research Centre, The University of Cambridge, Cancer Research UK, Cambridge Cancer Charity, Prostate Cancer UK, Hutchison Whampoa Limited, Terry Fox Research Institute, Princess Margaret Cancer Centre Foundation, PMH-Radiation Medicine Program Academic Enrichment Fund, Motorcycle Ride for Dad (Durham), Canadian Cancer Society.


Assuntos
Biomarcadores Tumorais/genética , Perfilação da Expressão Gênica , Recidiva Local de Neoplasia/diagnóstico , Recidiva Local de Neoplasia/genética , Neoplasias da Próstata/genética , Microambiente Tumoral/genética , DNA de Neoplasias/genética , Seguimentos , Genômica , Humanos , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Prognóstico , Estudos Retrospectivos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA