Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Oncogene ; 42(15): 1181-1195, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36823378

RESUMO

TSC-mTORC1 inhibition-mediated translational reprogramming is a major adaptation mechanism upon many stresses, such as low-oxygen, -ATP, and -amino acids. But how cancer cells hijack the adaptive pathway to survive under low-lactate stress when targeting glycolysis-related signaling remains uncertain. ETV4 is an oncogenic transcription factor frequently dysregulated in human cancer. We previously found that ETV4 is associated with tumor progression and poor prognosis in non-small cell lung cancer (NSCLC). In this study, we report that ETV4 controls HK1 expression and glycolysis-lactate production to activate mTORC1 by relieving TSC2 repression of Rheb in NSCLC cells. Targeting ETV4-induced low-lactate stress is an important input for TSC2 to inhibit mTORC1 and global protein synthesis, while the core stress granule components G3BP2 and HDAC6 are selectively translated. Mechanistically, G3BP2 recruits lysosomal-TSC2 to suppress mTORC1. HDAC6 deacetylates TSC2 to sustain protein stability and associates with G3BP2 to facilitate more recruiting of TSC2 to inactivate mTORC1. In addition, the microtubule retrograde transport activity of HDAC6 drives the aggregate-like perinuclear-mTOR distribution paralleled by lower mTORC1 activity under stress. Thus, HDAC6-G3BP2 is the key complex that promotes lysosomal-TSC2 and suppresses mTORC1 when targeting ETV4, which might represent a critical adaptive mechanism for cell survival under low-lactate challenges.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Proteína 2 do Complexo Esclerose Tuberosa/metabolismo , Ácido Láctico/metabolismo , Linhagem Celular Tumoral , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Lisossomos/metabolismo , Proteínas Proto-Oncogênicas c-ets/metabolismo , Desacetilase 6 de Histona/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
2.
Cancer Sci ; 114(4): 1740-1756, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36478492

RESUMO

Limb expression 1-like protein (LIX1L) might be an RNA-binding protein involved in post-transcriptional regulation. However, little is known regarding the biological function and mechanism of LIX1L in cancer cells. Here we demonstrate a clear correlation between LIX1L expression and epithelial-mesenchymal transition (EMT) markers in 81 non-small cell lung cancer (NSCLC) tissues and The Cancer Genome Atlas database, suggesting that LIX1L is a mesenchymal marker. Besides, LIX1L expression is obviously elevated in TGFß1-induced EMT NSCLC cells and enhances cell migration, invasion, anoikis resistance, epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) resistance, and proliferation. Interestingly, the increased LIX1L expression prominently localizes to the nucleoli, where it physically interacts with the key ribosome biogenesis regulator NCL protein, inducing ribosomal RNA (rRNA) synthesis in EMT NSCLC cells. NCL knockdown or inhibition of rRNA synthesis reverses the enhanced EMT functions and proliferation ability caused by LIX1L overexpression in NSCLC cells, indicating that NCL expression and rRNA synthesis participates in LIX1L-mediated biological functions during EMT. Collectively, our findings suggest that the LIX1L-NCL-rRNA synthesis axis is a novel EMT-activated mechanism. Targeting the pathway might be a therapeutic option for EMT and EGFR-TKI resistance in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal/genética , Receptores ErbB , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Ribossomos/metabolismo , RNA Ribossômico/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Nucleolina
3.
Int J Med Robot ; 18(5): e2426, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35635380

RESUMO

BACKGROUND: Image-guided computer-aided navigation system is an indispensable part of computer assisted orthopaedic surgery. However, the location and number of fiducial markers, the time required to localise fiducial markers in existing systems affect their effectiveness. METHOD: The study proposed that spatial surface registration between the point cloud on the surface of the fusion model based on preoperative knee MRI and CT images and the point cloud on the cartilage surface captured by intraoperative laser scanner could solve the above limitations. RESULTS: The experimental results show that the registration error of the method is less than 2 mm, but the total time from scanning the point cloud on patient's cartilage surface to registering it with the point cloud in preoperative image space is less than 2 min. CONCLUSION: The method achieves the registration accuracy similar to existing methods without selecting anatomical corresponding points, which is of great help to the clinic.


Assuntos
Artroplastia do Joelho , Cirurgia Assistida por Computador , Algoritmos , Marcadores Fiduciais , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Cirurgia Assistida por Computador/métodos
4.
Phys Chem Chem Phys ; 21(36): 20239-20251, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31490518

RESUMO

The amyloid formation of human islet amyloid polypeptide (hIAPP)-an intrinsically disordered peptide, is associated with type II diabetes. Cellular membranes, especially those composed of negatively-charged lipids, accelerate the hIAPP amyloid fibrillation, and their integrity is disrupted during the aggregation process, leading to cell apoptosis. However, the underlying molecular mechanism is not well understood. Herein, we investigated the conformational dynamics during the interactions of hIAPP monomer with POPG membrane bilayer, by carrying out µs-long all-atom molecular dynamics simulations. Starting from the metastable coiled conformations in water, hIAPP monomers tend to adopt transient α-helical and ß-sheet structures when adsorbing to the membrane surface. The amphiphilic N-terminal region further inserts into the membrane interior and is located at the lipid head-tail interface, mainly in turn and α-helical structures. In contrast, the ß-hairpin structures reside on the membrane surface without insertion, and expand laterally with the hydrophobic residues exposed to the solvent. Moreover, the adsorption and insertion of hIAPP monomers induce two distinct local membrane deformations: (1) the hIAPP adsorption on the membrane surface mainly causes membrane bending; (2) the insertion of both turns and α-helices synchronizes with the formation of hydrophobic defects on the POPG membrane, leading to stronger membrane stretching and a longer coherence length of membrane thinning. Based on the structural and dynamical results, we propose that ß-hairpin structures may be a precursor for the fibrillation on the membrane surface due to the flat geometry and hydrophobic regions exposed to solvent, while N-terminal amphiphilic α-helices would facilitate hIAPP assembling into toxic oligomers inside the membrane.


Assuntos
Membrana Celular/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo
5.
Int J Comput Assist Radiol Surg ; 12(12): 2157-2167, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28861704

RESUMO

PURPOSE: Multimodal image registration plays an important role in image-guided interventions/therapy and atlas building, and it is still a challenging task due to the complex intensity variations in different modalities. METHODS: The paper addresses the problem and proposes a simple, compact, fast and generally applicable modality-independent binary gradient angle descriptor (BGA) based on the rationale of gradient orientation alignment. The BGA can be easily calculated at each voxel by coding the quadrant in which a local gradient vector falls, and it has an extremely low computational complexity, requiring only three convolutions, two multiplication operations and two comparison operations. Meanwhile, the binarized encoding of the gradient orientation makes the BGA more resistant to image degradations compared with conventional gradient orientation methods. The BGA can extract similar feature descriptors for different modalities and enable the use of simple similarity measures, which makes it applicable within a wide range of optimization frameworks. RESULTS: The results for pairwise multimodal and monomodal registrations between various images (T1, T2, PD, T1c, Flair) consistently show that the BGA significantly outperforms localized mutual information. The experimental results also confirm that the BGA can be a reliable alternative to the sum of absolute difference in monomodal image registration. The BGA can also achieve an accuracy of [Formula: see text], similar to that of the SSC, for the deformable registration of inhale and exhale CT scans. Specifically, for the highly challenging deformable registration of preoperative MRI and 3D intraoperative ultrasound images, the BGA achieves a similar registration accuracy of [Formula: see text] compared with state-of-the-art approaches, with a computation time of 18.3 s per case. CONCLUSIONS: The BGA improves the registration performance in terms of both accuracy and time efficiency. With further acceleration, the framework has the potential for application in time-sensitive clinical environments, such as for preoperative MRI and intraoperative US image registration for image-guided intervention.


Assuntos
Algoritmos , Imageamento Tridimensional , Imageamento por Ressonância Magnética/métodos , Imagem Multimodal/métodos , Cirurgia Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Ultrassonografia/métodos , Humanos , Período Intraoperatório
6.
Int J Comput Assist Radiol Surg ; 11(6): 997-1005, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27250854

RESUMO

PURPOSE: Computer-assisted intervention often depends on multimodal deformable registration to provide complementary information. However, multimodal deformable registration remains a challenging task. METHODS: This paper introduces a novel robust and fast modality-independent 3D binary descriptor, called miLBP, which integrates the principle of local self-similarity with a form of local binary pattern and can robustly extract the similar geometry features from 3D volumes across different modalities. miLBP is a bit string that can be computed by simply thresholding the voxel distance. Furthermore, the descriptor similarity can be evaluated efficiently using the Hamming distance. RESULTS: miLBP was compared to vector-valued self-similarity context (SSC) in artificial image and clinical settings. The results show that miLBP is more robust than SSC in extracting local geometry features across modalities and achieved higher registration accuracy in different registration scenarios. Furthermore, in the most challenging registration between preoperative magnetic resonance imaging and intra-operative ultrasound images, our approach significantly outperforms the state-of-the-art methods in terms of both accuracy ([Formula: see text]) and speed (29.2 s for one case). CONCLUSIONS: Registration performance and speed indicate that miLBP has the potential of being applied to the time-sensitive intra-operative computer-assisted intervention.


Assuntos
Algoritmos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Imagem Multimodal/métodos , Técnica de Subtração , Ultrassonografia/métodos , Humanos
7.
Sci Rep ; 6: 26972, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27248706

RESUMO

Patients with frontal lobe gliomas often experience neurocognitive dysfunctions before surgery, which affects the default mode network (DMN) to different degrees. This study quantitatively analyzed this effect from the perspective of cerebral hemispheric functional connectivity (FC). We collected resting-state fMRI data from 20 frontal lobe glioma patients before treatment and 20 healthy controls. All of the patients and controls were right-handed. After pre-processing the images, FC maps were built from the seed defined in the left or right posterior cingulate cortex (PCC) to the target regions determined in the left or right temporal-parietal junction (TPJ), respectively. The intra- and cross-group statistical calculations of FC strength were compared. The conclusions were as follows: (1) the intra-hemisphere FC strength values between the PCC and TPJ on the left and right were decreased in patients compared with controls; and (2) the correlation coefficients between the FC pairs in the patients were increased compared with the corresponding controls. When all of the patients were grouped by their tumor's hemispheric location, (3) the FC of the subgroups showed that the dominant hemisphere was vulnerable to glioma, and (4) the FC in the dominant hemisphere showed a significant correlation with WHO grade.


Assuntos
Neoplasias Encefálicas/patologia , Conectoma , Lobo Frontal/patologia , Glioma/patologia , Giro do Cíngulo/patologia , Rede Nervosa/patologia , Adulto , Idoso , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/fisiopatologia , Estudos de Casos e Controles , Cérebro/diagnóstico por imagem , Cérebro/patologia , Cérebro/fisiopatologia , Feminino , Lobo Frontal/diagnóstico por imagem , Lobo Frontal/fisiopatologia , Glioma/diagnóstico por imagem , Glioma/fisiopatologia , Giro do Cíngulo/diagnóstico por imagem , Giro do Cíngulo/fisiopatologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Lobo Parietal/diagnóstico por imagem , Lobo Parietal/patologia , Lobo Parietal/fisiopatologia , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/patologia , Lobo Temporal/fisiopatologia
8.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 25(1): 18-22, 2008 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-18435248

RESUMO

Studying the critical technique of virtual endoscopy (VE), we developed a VE system for clinical application. Computerized tomograph (CT) VE images built by the VE system were compared to those by fiberscopy and pathology. The results showed that the VE system could satisfy the demand of clinical application. The technique being applied to VE system is feasible.


Assuntos
Simulação por Computador , Endoscopia do Sistema Digestório/métodos , Imageamento Tridimensional , Imageamento por Ressonância Magnética/métodos , Tomografia Computadorizada por Raios X/métodos , Humanos , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA