Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Neurochem ; 158(2): 217-232, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33864399

RESUMO

Gangliosides are expressed on plasma membranes throughout the body and enriched in the nervous system. A critical role for complex a- and b-series gangliosides in central and peripheral nervous system ageing has been established through transgenic manipulation of enzymes in ganglioside biosynthesis. Disrupting GalNAc-transferase (GalNAc-T), thus eliminating all a- and b-series complex gangliosides (with consequent over-expression of GM3 and GD3) leads to an age-dependent neurodegeneration. Mice that express only GM3 ganglioside (double knockout produced by crossing GalNAc-T-/- and GD3 synthase-/- mice, Dbl KO) display markedly accelerated neurodegeneration with reduced survival. Degenerating axons and disrupted node of Ranvier architecture are key features of complex ganglioside-deficient mice. Previously, we have shown that reintroduction of both a- and b-series gangliosides into neurons on a global GalNAcT-/- background is sufficient to rescue this age-dependent neurodegenerative phenotype. To determine the relative roles of a- and b-series gangliosides in this rescue paradigm, we herein reintroduced GalNAc-T into neurons of Dbl KO mice, thereby reconstituting a-series but not b-series complex gangliosides. We assessed survival, axon degeneration, axo-glial integrity, inflammatory markers and lipid-raft formation in these Rescue mice compared to wild-type and Dbl KO mice. We found that this neuronal reconstitution of a-series complex gangliosides abrogated the adult lethal phenotype in Dbl KO mice, and partially attenuated the neurodegenerative features. This suggests that whilst neuronal expression of a-series gangliosides is critical for survival during ageing, it is not entirely sufficient to restore complete nervous system integrity in the absence of either b-series or glial a-series gangliosides.


Assuntos
Gangliosídeo G(M3)/metabolismo , Gangliosídeos/metabolismo , Genes Letais/genética , Neurônios/metabolismo , Animais , Axônios/patologia , Transtornos Heredodegenerativos do Sistema Nervoso/genética , Transtornos Heredodegenerativos do Sistema Nervoso/patologia , Inflamação/metabolismo , Microdomínios da Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , N-Acetilgalactosaminiltransferases/genética , Fenótipo , Nós Neurofibrosos/patologia , Sialiltransferases/genética , Análise de Sobrevida , Polipeptídeo N-Acetilgalactosaminiltransferase
2.
J Neuroimmunol ; 323: 28-35, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30196830

RESUMO

Sulfatide is a major glycosphingolipid in myelin and a target for autoantibodies in autoimmune neuropathies. However neuropathy disease models have not been widely established, in part because currently available monoclonal antibodies to sulfatide may not represent the diversity of anti-sulfatide antibody binding patterns found in neuropathy patients. We sought to address this issue by generating and characterising a panel of new anti-sulfatide monoclonal antibodies. These antibodies have sulfatide reactivity distinct from existing antibodies in assays and in binding to peripheral nerve tissues and can be used to provide insights into the pathophysiological roles of anti-sulfatide antibodies in demyelinating neuropathies.


Assuntos
Autoanticorpos/sangue , Membrana Celular/metabolismo , Neuroglia/metabolismo , Sulfoglicoesfingolipídeos/metabolismo , Animais , Linhagem Celular Tumoral , Membrana Celular/patologia , Células Cultivadas , Doenças Desmielinizantes/sangue , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/patologia , Camundongos , Camundongos Endogâmicos DBA , Camundongos Knockout , Neuroglia/patologia , Ligação Proteica/fisiologia
3.
Brain ; 139(Pt 6): 1657-65, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27017187

RESUMO

SEE VAN DOORN AND JACOBS DOI101093/BRAIN/AWW078 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE : In axonal forms of Guillain-Barré syndrome, anti-ganglioside antibodies bind gangliosides on nerve surfaces, thereby causing injury through complement activation and immune cell recruitment. Why some nerve regions are more vulnerable than others is unknown. One reason may be that neuronal membranes with high endocytic activity, including nerve terminals involved in neurotransmitter recycling, are able to endocytose anti-ganglioside antibodies from the cell surface so rapidly that antibody-mediated injury is attenuated. Herein we investigated whether endocytic clearance of anti-ganglioside antibodies by nerve terminals might also be of sufficient magnitude to deplete circulating antibody levels. Remarkably, systemically delivered anti-ganglioside antibody in mice was so avidly cleared from the circulation by endocytosis at ganglioside-expressing plasma membranes that it was rapidly rendered undetectable in serum. A major component of the clearance occurred at motor nerve terminals of neuromuscular junctions, from where anti-ganglioside antibody was retrogradely transported to the motor neuron cell body in the spinal cord, recycled to the plasma membrane, and secreted into the surrounding spinal cord. Uptake at the neuromuscular junction represents a major unexpected pathway by which pathogenic anti-ganglioside antibodies, and potentially other ganglioside binding proteins, are cleared from the systemic circulation and also covertly delivered to the central nervous system.


Assuntos
Anticorpos/metabolismo , Endocitose/imunologia , Gangliosídeos/imunologia , Terminações Pré-Sinápticas/metabolismo , Animais , Anticorpos/sangue , Membrana Celular/metabolismo , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Knockout , N-Acetilgalactosaminiltransferases/genética , Junção Neuromuscular/metabolismo , Polipeptídeo N-Acetilgalactosaminiltransferase
4.
Acta Neuropathol Commun ; 4: 23, 2016 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-26936605

RESUMO

INTRODUCTION: Guillain-Barré syndrome (GBS) is an autoimmune disease that results in acute paralysis through inflammatory attack on peripheral nerves, and currently has limited, non-specific treatment options. The pathogenesis of the acute motor axonal neuropathy (AMAN) variant is mediated by complement-fixing anti-ganglioside antibodies that directly bind and injure the axon at sites of vulnerability such as nodes of Ranvier and nerve terminals. Consequently, the complement cascade is an attractive target to reduce disease severity. Recently, C5 complement component inhibitors that block the formation of the membrane attack complex and subsequent downstream injury have been shown to be efficacious in an in vivo anti-GQ1b antibody-mediated mouse model of the GBS variant Miller Fisher syndrome (MFS). However, since gangliosides are widely expressed in neurons and glial cells, injury in this model was not targeted exclusively to the axon and there are currently no pure mouse models for AMAN. Additionally, C5 inhibition does not prevent the production of early complement fragments such as C3a and C3b that can be deleterious via their known role in immune cell and macrophage recruitment to sites of neuronal damage. RESULTS AND CONCLUSIONS: In this study, we first developed a new in vivo transgenic mouse model of AMAN using mice that express complex gangliosides exclusively in neurons, thereby enabling specific targeting of axons with anti-ganglioside antibodies. Secondly, we have evaluated the efficacy of a novel anti-C1q antibody (M1) that blocks initiation of the classical complement cascade, in both the newly developed anti-GM1 antibody-mediated AMAN model and our established MFS model in vivo. Anti-C1q monoclonal antibody treatment attenuated complement cascade activation and deposition, reduced immune cell recruitment and axonal injury, in both mouse models of GBS, along with improvement in respiratory function. These results demonstrate that neutralising C1q function attenuates injury with a consequent neuroprotective effect in acute GBS models and promises to be a useful new target for human therapy.


Assuntos
Complemento C1q/metabolismo , Via Clássica do Complemento/fisiologia , Gangliosídeos/metabolismo , Doenças do Sistema Nervoso Periférico/patologia , Animais , Anticorpos/farmacologia , Anticorpos/uso terapêutico , Complemento C1q/genética , Via Clássica do Complemento/genética , Diafragma/metabolismo , Diafragma/patologia , Transportadores de Ácidos Dicarboxílicos/genética , Modelos Animais de Doenças , Gangliosídeos/classificação , Gangliosídeos/imunologia , Síndrome de Guillain-Barré/metabolismo , Síndrome de Guillain-Barré/patologia , Humanos , Infiltração Leucêmica , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora/efeitos dos fármacos , Atividade Motora/genética , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/genética , Doenças do Sistema Nervoso Periférico/fisiopatologia , Receptores Nicotínicos/metabolismo , Respiração/efeitos dos fármacos , Respiração/genética , Especificidade da Espécie , Simportadores/genética , Volume de Ventilação Pulmonar/efeitos dos fármacos , Volume de Ventilação Pulmonar/genética
5.
J Neurosci ; 34(3): 880-91, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24431446

RESUMO

Gangliosides are widely expressed sialylated glycosphingolipids with multifunctional properties in different cell types and organs. In the nervous system, they are highly enriched in both glial and neuronal membranes. Mice lacking complex gangliosides attributable to targeted ablation of the B4galnt1 gene that encodes ß-1,4-N-acetylegalactosaminyltransferase 1 (GalNAc-transferase; GalNAcT(-/-)) develop normally before exhibiting an age-dependent neurodegenerative phenotype characterized by marked behavioral abnormalities, central and peripheral axonal degeneration, reduced myelin volume, and loss of axo-glial junction integrity. The cell biological substrates underlying this neurodegeneration and the relative contribution of either glial or neuronal gangliosides to the process are unknown. To address this, we generated neuron-specific and glial-specific GalNAcT rescue mice crossed on the global GalNAcT(-/-) background [GalNAcT(-/-)-Tg(neuronal) and GalNAcT(-/-)-Tg(glial)] and analyzed their behavioral, morphological, and electrophysiological phenotype. Complex gangliosides, as assessed by thin-layer chromatography, mass spectrometry, GalNAcT enzyme activity, and anti-ganglioside antibody (AgAb) immunohistology, were restored in both neuronal and glial GalNAcT rescue mice. Behaviorally, GalNAcT(-/-)-Tg(neuronal) retained a normal "wild-type" (WT) phenotype throughout life, whereas GalNAcT(-/-)-Tg(glial) resembled GalNAcT(-/-) mice, exhibiting progressive tremor, weakness, and ataxia with aging. Quantitative electron microscopy demonstrated that GalNAcT(-/-) and GalNAcT(-/-)-Tg(glial) nerves had significantly increased rates of axon degeneration and reduced myelin volume, whereas GalNAcT(-/-)-Tg(neuronal) and WT appeared normal. The increased invasion of the paranode with juxtaparanodal Kv1.1, characteristically seen in GalNAcT(-/-) and attributed to a breakdown of the axo-glial junction, was normalized in GalNAcT(-/-)-Tg(neuronal) but remained present in GalNAcT(-/-)-Tg(glial) mice. These results indicate that neuronal rather than glial gangliosides are critical to the age-related maintenance of nervous system integrity.


Assuntos
Envelhecimento/metabolismo , Gangliosídeos/deficiência , Regulação Enzimológica da Expressão Gênica , N-Acetilgalactosaminiltransferases/genética , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Fenótipo , Envelhecimento/genética , Envelhecimento/patologia , Animais , Axônios/metabolismo , Axônios/patologia , Gangliosídeos/genética , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , N-Acetilgalactosaminiltransferases/biossíntese , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Neurônios/patologia , Polipeptídeo N-Acetilgalactosaminiltransferase
6.
J Cell Sci ; 121(Pt 10): 1758-69, 2008 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-18445683

RESUMO

To investigate gene synergism in multistage skin carcinogenesis, the RU486-inducible cre/lox system was employed to ablate Pten function (K14.cre/Delta5Pten flx) in mouse epidermis expressing activated Fos (HK1.Fos). RU486-treated HK1.Fos/Delta5Pten flx mice exhibited hyperplasia, hyperkeratosis and tumours that progressed to highly differentiated keratoacanthomas, rather than to carcinomas, owing to re-expression of high p53 and p21 WAF levels. Despite elevated MAP kinase activity, cyclin D1 and cyclin E2 overexpression, and increased AKT activity that produced areas of highly proliferative papillomatous keratinocytes, increasing levels of GSK3beta inactivation induced a novel p53/p21 WAF expression profile, which subsequently halted proliferation and accelerated differentiation to give the hallmark keratosis of keratoacanthomas. A pivotal facet to this GSK3beta-triggered mechanism centred on increasing p53 expression in basal layer keratinocytes. This increase in expression reduced activated AKT expression and released inhibition of p21 WAF, which accelerated keratinocyte differentiation, as indicated by unique basal layer expression of differentiation-specific keratin K1 alongside premature filaggrin and loricrin expression. Thus, Fos synergism with Pten loss elicited a benign tumour context where GSK3beta-induced p53/p21 WAF expression continually switched AKT-associated proliferation into differentiation, preventing further progression. This putative compensatory mechanism required the critical availability of normal p53 and/or p21 WAF, otherwise deregulated Fos, Akt and Gsk3beta associate with malignant progression.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Queratinócitos/metabolismo , Ceratoacantoma/metabolismo , Proteínas Oncogênicas v-fos/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Ciclina D , Ciclinas/metabolismo , Progressão da Doença , Queratinócitos/citologia , Camundongos , Mifepristona/farmacologia , Proteína Oncogênica v-akt/metabolismo , Proteínas Repressoras/metabolismo , Neoplasias Cutâneas/metabolismo
7.
Cancer Res ; 66(3): 1302-12, 2006 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-16452183

RESUMO

PTEN tumor suppressor gene failure in ras(Ha)-activated skin carcinogenesis was investigated by mating exon 5 floxed-PTEN (Delta5PTEN) mice to HK1.ras mice that expressed a RU486-inducible cre recombinase (K14.creP). PTEN inactivation in K14.cre/PTEN(flx/flx) keratinocytes resulted in epidermal hyperplasia/hyperkeratosis and novel 12-O-tetradecanoylphorbol-13-acetate (TPA)-promoted papillomas, whereas HK1.ras/K14.cre/PTEN(flx/flx) cohorts displayed a rapid onset of papillomatogenesis due to a synergism of increased AKT activity and extracellular signal-regulated kinase (ERK) elevation. High 5-bromo-4-deoxyuridine labeling in Delta5PTEN papillomas showed that a second promotion mechanism centered on failures in cell cycle control. Elevated cyclin D1 was associated with both HK1.ras/ERK- and Delta5PTEN-mediated AKT signaling, whereas cyclin E2 overexpression seemed dependent on PTEN loss. Spontaneous HK1.ras/Delta5PTEN malignant conversion was rare, whereas TPA promotion resulted in conversion with high frequency. On comparison with all previous HK1.ras carcinomas, such TPA-induced carcinomas expressed atypical retention of keratin K1 and lack of K13, a unique marker profile exhibited by TPA-induced K14.cre/PTEN(flx/flx) papillomas that also lacked endogenous c-ras(Ha) activation. Moreover, in all PTEN-null tumors, levels of ras(Ha)-associated total ERK protein became reduced, whereas phosphorylated ERK and cyclin D1 were lowered in late-stage papillomas returning to elevated levels, alongside increased cyclin E2 expression, in TPA-derived carcinomas. Thus, during early papillomatogenesis, PTEN loss promotes ras(Ha) initiation via elevation of AKT activity and synergistic failures in cyclin regulation. However, in progression, reduced ras(Ha)-associated ERK protein and activity, increased Delta5PTEN-associated cyclin E2 expression, and unique K1/K13 profiles following TPA treatment suggest that PTEN loss, rather than ras(Ha) activation, gives rise to a population of cells with greater malignant potential.


Assuntos
Proteína Oncogênica v-akt/metabolismo , PTEN Fosfo-Hidrolase/deficiência , Papiloma/enzimologia , Neoplasias Cutâneas/enzimologia , Proteínas ras/fisiologia , Animais , Carcinógenos , Diferenciação Celular/fisiologia , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Queratina-13 , Queratinas/biossíntese , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Transgênicos , Mifepristona/farmacologia , Proteína Oncogênica v-akt/biossíntese , Proteína Oncogênica v-akt/genética , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Papiloma/induzido quimicamente , Papiloma/genética , Papiloma/patologia , Neoplasias Cutâneas/induzido quimicamente , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Acetato de Tetradecanoilforbol , Regulação para Cima , Proteínas ras/genética , Proteínas ras/metabolismo
8.
Biochem Pharmacol ; 67(1): 31-9, 2004 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-14667926

RESUMO

We have recently shown that drug conjugation catalysed by UDP-glucuronosyltransferases (UGTs) functions as an intrinsic mechanism of resistance to the topoisomerase I inhibitors 7-ethyl-10-hydroxycamptothecin and NU/ICRF 505 in human colon cancer cells and now report on the role of drug transport in this mechanism. The ability of transport proteins to recognise NU/ICRF 505 as a substrate was evaluated in model systems either transfected with breast cancer-resistance protein 1 (Bcrp1), multidrug-resistance protein 2 (Mrp2) or Mrp3, or overexpressing MRP1 or P-170 glycoprotein. Results from chemosensitivity assays suggested that NU/ICRF 505 was not a substrate for any of the above proteins. In drug accumulation studies in human colon cancer cell lines NU/ICRF 505 was taken up avidly and retained in cells lacking UGTs (HCT116), whereas, following equally rapid uptake, it was cleared rapidly from cells displaying UGT activity (HT29) as glucuronide metabolites. HT29 cells were shown to express MRP1 and 3, but not P-170 glycoprotein, MRP2 or breast cancer-resistance protein. The major glucuronide of NU/ICRF 505 inhibited ATP-dependent transport of estradiol 17-beta-glucuronide in Sf9 insect cell membrane vesicles containing MRP1 or MRP3, while co-incubation of HT29 cells with the MRP antagonist, MK571, significantly restored intracellular concentrations of NU/ICRF 505. These data lead us to conclude that the presence of a glucuronide transporter is essential for glucuronidation to represent a major de novo resistance mechanism and that UGTs will contribute more as a primary resistance mechanism when the parent drug (e.g. NU/ICRF 505) is not itself recognised by transport proteins.


Assuntos
Antraquinonas/farmacologia , Camptotecina/análogos & derivados , Glucuronídeos/metabolismo , Proteínas de Membrana Transportadoras , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Tirosina/análogos & derivados , Tirosina/farmacologia , Antígenos CD/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Transporte Biológico , Camptotecina/farmacologia , Proteínas de Transporte , Neoplasias do Colo , Interações Medicamentosas , Resistência a Medicamentos , Células HT29 , Humanos , Irinotecano , Glicoproteínas de Membrana/metabolismo , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Propionatos/farmacologia , Quinolinas/farmacologia , Tetraspanina 29 , Células Tumorais Cultivadas
9.
Biochem Pharmacol ; 64(11): 1569-78, 2002 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-12429346

RESUMO

The epithelial canine and porcine kidney cell lines MDCK, MDCKII and LLC-PK1, respectively are employed to establish recombinant models of drug transport. Endogenous drug carriers in these cells may contribute to the activities of recombinant drug transporters, thus making it difficult to assess their properties. We analysed the expression of endogenous transporters in these cell lines by RT-PCR and by determining drug transporter activities. Concerning drug efflux, multidrug resistance protein 1 (MDR1) and MRP1 mRNAs were found in all lines. MRP2 mRNA was expressed in all cell lines except MDCK. Transepithelial transport of vinblastine and its modulation by a MDR1-specific inhibitor or by the MDR1- and MRP-inhibitor verapamil, indicated that MDCKII cells have, in comparisons to the other cell lines, relatively high levels of functional MDR1 while vinblastine transport in MDCK cells is likely to be mediated more by MRP1. Notably, LLC-PK1 cells displayed little activity attributable to either MDR1 and MRP1, thus making them suitable for the expression of these efflux pumps. Of the drug uptake carriers, OATP-A mRNA was only expressed in MDCK cells. OATP-C mRNA was barely detectable in MDCK cells and absent in MDCKII and LLC-PK1 cells. In agreement with transcriptional profiling, the OATP-mediated uptake of either estradiol-glucuronide or estrone-sulfate was either absent or barely detectable in all cell lines thus implying that they are suitable to establish recombinant models for human OATP's. Transcriptional profiling was also performed on porcine and canine tissues and revealed that MRP1 was expressed in canine but not in human or porcine liver, whereas surprisingly OATP-C was expressed in canine kidney but only in human and porcine liver. The findings presented are relevant to the use of porcine and canine models for drug disposition.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/biossíntese , Transportador 1 de Ânion Orgânico Específico do Fígado/biossíntese , Preparações Farmacêuticas/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Animais , Transporte Biológico , Linhagem Celular , DNA Complementar/análise , Cães , Feminino , Perfilação da Expressão Gênica , Humanos , Transportador 1 de Ânion Orgânico Específico do Fígado/genética , Masculino , Modelos Biológicos , Valor Preditivo dos Testes , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA