Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 270: 115923, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38171107

RESUMO

3,3',4',4',5-Polychlorinated biphenyls (PCB126) is classified as a persistent organic environmental pollutant that can cause liver damage by producing excessive reactive oxygen species (ROS). ROS also can stimulate neutrophil extracellular traps (NETs) formation, which cause damage to organism if NETs are produced in excess. Melatonin is generally considered to possess strong antioxidant and anti-inflammation prosperities, but it is unclear whether it can alleviate PCB126-induced injury. To explore whether PCB126-induced liver injury is related to the formation of NETs and whether melatonin has a potent protective effect, we established PCB126 exposure/ PCB126 and melatonin co-treatment mouse models by gavage. To further clarify the specific mechanism, we also cultured neutrophils and AML12 cells to replicate in vivo model. Here, we found PCB126 exposure resulted in an elevation in the activities of MDA, LPO, PCO, and 8-OHdG, and a reduction in the activities of CAT, GSH-PX and SOD. We found that PCB126 exposure led to an elevation in the expression levels of chemokines (CCL2, CCL3, CCL4, CXCL12, and CXCL8) and marker factors for NETs formation (MPO, NE, NOX2, PKCα, and PKCζ) in the PCB126 group. IF, SYTOX staining, and SEM results also revealed that PCB126 could stimulate NETs formation. In addition, results of a co-culture system of PBNs and AML12 cells revealed that the expression levels of inflammatory cytokines (IL-1ß, IL-6, and TNF-α) significantly decreased and the expression levels of metabolism factors (Fas, Acc, and Srebp) slightly decreased for scavenging NETs, indicating NETs formation aggravated PCB126-induced hepatic damages. Noteworthy, treatment with melatonin reversed these results. In summary, our findings revealed that melatonin alleviated hepatic damage aggravated by PCB126-induced ROS-dependent NETs formation through suppressing excessive ROS production. This finding not only enriches toxicological mechanism of PCB126, but more importantly extends biological effects of melatonin and its potential application values.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Armadilhas Extracelulares , Melatonina , Bifenilos Policlorados , Camundongos , Animais , Armadilhas Extracelulares/metabolismo , Bifenilos Policlorados/toxicidade , Bifenilos Policlorados/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Melatonina/farmacologia , Melatonina/metabolismo , Metabolismo dos Lipídeos , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Neutrófilos/metabolismo
2.
Cell Rep ; 42(8): 112961, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37561633

RESUMO

Refractory and relapsed B cell lymphomas are often driven by the difficult-to-target oncogene MYC. Here, we report that high MYC expression stimulates proliferation and protects B lymphoma cells from apoptosis under normal oxidative stress levels and that compounds including N-acetylcysteine (NAC) and vitamin C (VitC) induce apoptosis by reducing oxidative stress. NAC and VitC injections effectively reduce tumor growth in lymphoma cells with high MYC expression but not in those with low MYC expression. MYC knockdown confers tumor resistance to NAC and VitC, while MYC activation renders B cells sensitive to these compounds. Mechanistically, NAC and VitC stimulate MYC binding to EGR1 through Cys117 of MYC, shifting its transcriptional output from cell cycle to apoptosis gene expression. These results identify a redox-controlled mechanism for MYC's role in maintaining proliferation and preventing apoptosis, offering a potential therapeutic rationale for evaluating NAC or VitC in patients with MYC-driven B cell lymphoma.

3.
J Clin Invest ; 133(20)2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37651203

RESUMO

Lung cancer progression relies on angiogenesis, which is a response to hypoxia typically coordinated by hypoxia-inducible transcription factors (HIFs), but growing evidence indicates that transcriptional programs beyond HIFs control tumor angiogenesis. Here, we show that the redox-sensitive transcription factor BTB and CNC homology 1 (BACH1) controls the transcription of a broad range of angiogenesis genes. BACH1 is stabilized by lowering ROS levels; consequently, angiogenesis gene expression in lung cancer cells, tumor organoids, and xenograft tumors increased substantially following administration of vitamins C and E and N-acetylcysteine in a BACH1-dependent fashion under normoxia. Moreover, angiogenesis gene expression increased in endogenous BACH1-overexpressing cells and decreased in BACH1-knockout cells in the absence of antioxidants. BACH1 levels also increased upon hypoxia and following administration of prolyl hydroxylase inhibitors in both HIF1A-knockout and WT cells. BACH1 was found to be a transcriptional target of HIF1α, but BACH1's ability to stimulate angiogenesis gene expression was HIF1α independent. Antioxidants increased tumor vascularity in vivo in a BACH1-dependent fashion, and overexpressing BACH1 rendered tumors sensitive to antiangiogenesis therapy. BACH1 expression in tumor sections from patients with lung cancer correlated with angiogenesis gene and protein expression. We conclude that BACH1 is an oxygen- and redox-sensitive angiogenesis transcription factor.


Assuntos
Antioxidantes , Fatores de Transcrição de Zíper de Leucina Básica , Neoplasias Pulmonares , Humanos , Antioxidantes/farmacologia , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Hipóxia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Animais , Camundongos
4.
Redox Biol ; 60: 102619, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36774779

RESUMO

Oxidative stress is a barrier of migration and metastasis for malignant melanoma cells. Consequently, reducing oxidative stress with the antioxidant N-acetylcysteine (NAC) stimulates melanoma cell migration in vitro and metastasis in vivo. However, it is not yet known whether the NAC effect is shared with other antioxidants. Here, we screened 104 redox-active compounds and identify 27 that increase migration of human malignant melanoma cells in two doses. Validation experiments in four cell lines and four drug doses resulted in a list of 18 compounds which were ranked based on their ability to increase migration and reduce ROS levels; vitamin C (VitC) ranked as number one, followed by the vitamin E analogue Trolox and several carotenoids and Vitamin A-related compounds. Four diet-relevant compounds from this list-VitC, ß-carotene, retinyl palmitate, and canthaxanthin-were selected and found to accelerate metastasis in mice with BRAFV600E-driven malignant melanoma. Genomics analyses revealed that the transcription factor BACH1 is activated following antioxidant administration and knockout of Bach1 in mouse melanoma cells reduced lymph node and liver metastasis in xenograft mouse models. We conclude that a broad range of antioxidants accelerate melanoma migration and metastasis and that BACH1 is functionally linked to melanoma metastasis in vivo.


Assuntos
Antioxidantes , Melanoma , Animais , Humanos , Camundongos , Acetilcisteína , Antioxidantes/farmacologia , Ácido Ascórbico/farmacologia , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia , Espécies Reativas de Oxigênio/metabolismo , Vitaminas , Vitamina A/farmacologia , Melanoma Maligno Cutâneo
5.
Nat Commun ; 13(1): 3068, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35654881

RESUMO

Hutchinson-Gilford progeria syndrome (HGPS) is a rare premature ageing disorder caused by a point mutation in the LMNA gene (LMNA c.1824 C > T), resulting in the production of a detrimental protein called progerin. Adenine base editors recently emerged with a promising potential for HGPS gene therapy. However adeno-associated viral vector systems currently used in gene editing raise concerns, and the long-term effects of heterogeneous mutation correction in highly proliferative tissues like the skin are unknown. Here we use a non-integrative transient lentiviral vector system, expressing an adenine base editor to correct the HGPS mutation in the skin of HGPS mice. Transient adenine base editor expression corrected the mutation in 20.8-24.1% of the skin cells. Four weeks post delivery, the HGPS skin phenotype was improved and clusters of progerin-negative keratinocytes were detected, indicating that the mutation was corrected in both progenitor and differentiated skin cells. These results demonstrate that transient non-integrative viral vector mediated adenine base editor expression is a plausible approach for future gene-editing therapies.


Assuntos
Progéria , Adenina , Animais , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Camundongos , Mutação , Fenótipo , Progéria/genética , Progéria/metabolismo , Progéria/terapia
6.
Aging Cell ; 19(8): e13200, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32910507

RESUMO

Several progeroid disorders are caused by deficiency in the endoprotease ZMPSTE24 which leads to accumulation of prelamin A at the nuclear envelope. ZMPSTE24 cleaves prelamin A twice: at the third carboxyl-terminal amino acid following farnesylation of a -CSIM motif; and 15 residues upstream to produce mature lamin A. The carboxyl-terminal cleavage can also be performed by RAS-converting enzyme 1 (RCE1) but little is known about the importance of this cleavage for the ability of prelamin A to cause disease. Here, we found that knockout of RCE1 delayed senescence and increased proliferation of ZMPSTE24-deficient fibroblasts from a patient with non-classical Hutchinson-Gilford progeria syndrome (HGPS), but did not influence proliferation of classical LMNA-mutant HGPS cells. Knockout of Rce1 in Zmpste24-deficient mice at postnatal week 4-5 increased body weight and doubled the median survival time. The absence of Rce1 in Zmpste24-deficient fibroblasts did not influence nuclear shape but reduced an interaction between prelamin A and AKT which activated AKT-mTOR signaling and was required for the increased proliferation. Prelamin A levels increased in Rce1-deficient cells due to a slower turnover rate but its localization at the nuclear rim was unaffected. These results strengthen the idea that the presence of misshapen nuclei does not prevent phenotype improvement and suggest that targeting RCE1 might be useful for treating the rare progeroid disorders associated with ZMPSTE24 deficiency.


Assuntos
Genes ras/genética , Proteínas de Membrana/deficiência , Metaloendopeptidases/deficiência , Progéria/genética , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Knockout , Fenótipo
7.
Food Funct ; 11(2): 1312-1321, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32022057

RESUMO

Over the past decades, substantial advances have been made in both the early diagnosis and accurate prognosis of numerous cancers because of the impressive development of novel proteomic strategies. Selenium (Se) is an essential trace element in humans and animals. Se deficiency could lead to Keshan disease in humans, mulberry heart disease in pigs and damage of tissues including cardiac injury, apoptosis in the liver, reduction in the immune responses in spleen and cerebral lesions in chickens. However, it is well know that plasma biomarkers are not specific and also show alterations in various diseases including those caused by Se deficiency. Therefore, new definition biomarkers are needed to improve disease surveillance and reduce unnecessary chicken losses due to Se deficiency. To identify new biomarkers for Se deficiency, we performed exploratory heart, liver, spleen, muscle, vein, and artery proteomic screens to further validate the biomarkers using Venn analysis, GO enrichment, heatmap analysis, and IPA analysis. Based on the bioinformatics methods mentioned above, we found that differentially expressed genes and proteins are enriched to the PI3K/AKT/mTOR signal pathway and insulin pathway. We further used western blot to detect the expression of proteins related to the two pathways. Results showed that the components of the PI3K/AKT/mTOR signal pathway were definitely decreased in heart, liver, spleen, muscle, vein and artery tissues in the Se deficient group. Expression IGF and IGFBP2 of the insulin pathway were differentially increased in the heart, liver, and spleen in Se deficient group samples and decreased in muscle and artery. In conclusion, 5 proteins, namely PI3K, AKT, mTOR, IGF, and IGFBP2, were differentially expressed, which could be potentially useful Se deficient biomarkers. In the present study, proteomic profiling was used to elucidate protein biomarkers that distinguished Se deficient samples from the controls, which might provide a new direction for the diagnosis and targeted treatment induced by Se deficiency in chickens.


Assuntos
Especificidade de Órgãos/fisiologia , Proteoma , Selênio , Transdução de Sinais/fisiologia , Animais , Apoptose/fisiologia , Biomarcadores , Galinhas , Proteoma/análise , Proteoma/química , Proteoma/metabolismo , Proteômica , Selênio/deficiência , Selênio/metabolismo
8.
Cell ; 178(2): 330-345.e22, 2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31257027

RESUMO

For tumors to progress efficiently, cancer cells must overcome barriers of oxidative stress. Although dietary antioxidant supplementation or activation of endogenous antioxidants by NRF2 reduces oxidative stress and promotes early lung tumor progression, little is known about its effect on lung cancer metastasis. Here, we show that long-term supplementation with the antioxidants N-acetylcysteine and vitamin E promotes KRAS-driven lung cancer metastasis. The antioxidants stimulate metastasis by reducing levels of free heme and stabilizing the transcription factor BACH1. BACH1 activates transcription of Hexokinase 2 and Gapdh and increases glucose uptake, glycolysis rates, and lactate secretion, thereby stimulating glycolysis-dependent metastasis of mouse and human lung cancer cells. Targeting BACH1 normalized glycolysis and prevented antioxidant-induced metastasis, while increasing endogenous BACH1 expression stimulated glycolysis and promoted metastasis, also in the absence of antioxidants. We conclude that BACH1 stimulates glycolysis-dependent lung cancer metastasis and that BACH1 is activated under conditions of reduced oxidative stress.


Assuntos
Antioxidantes/farmacologia , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Glicólise/efeitos dos fármacos , Neoplasias Pulmonares/patologia , Animais , Antioxidantes/administração & dosagem , Fatores de Transcrição de Zíper de Leucina Básica/genética , Movimento Celular/efeitos dos fármacos , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/metabolismo , Heme/metabolismo , Hexoquinase/antagonistas & inibidores , Hexoquinase/genética , Hexoquinase/metabolismo , Humanos , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/mortalidade , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Fator 2 Relacionado a NF-E2/metabolismo , Metástase Neoplásica , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo
9.
Ecotoxicol Environ Saf ; 145: 503-510, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28783600

RESUMO

The nuclear transcription factor NF-E2-related factor 2 (Nrf2) binds to antioxidant response elements (AREs) and is involved in the regulation of genes participated in defending cells against oxidative damage, which have been confirmed in animal models. Selenium (Se), known as an important element in the regulation of antioxidant activity, can antagonize Cadmium (Cd) toxicity in birds. However, the role of Nrf2 in selenium-cadmium interaction has not been reported in birds. To further explore the mechanism of selenium attenuating spleen toxicity induced by cadmium in chickens, cadmium chloride (CdCl2, 150mg/kg) and sodium selenite (Na2SeO3, 2mg/kg) were co-administrated or individually administered in the diet of chickens for 90 days. The results showed that Cd exposure increased the level of hydrogen peroxide (H2O2) and malondialdehyde (MDA) and decreased the antioxidant enzyme activities, including superoxide dismutase (SOD), glutathione peroxidase (Gpx), total antioxidative capacity (T-AOC), catalase (CAT). Cd exposure increased obviously nuclear accumulation of Nrf2, and the expression of Nrf2 downstream heme oxygenase-1 (HO-1) and NAD(P)H: quinine oxidoreductase 1 (NQO1), reduced the expression of Kelch-like ECH-associated protein (keap1), Gpx-1 and thioredoxin reductase-1 (TrxR1). In addition, Cd induced the increase of bak, caspase9, p53, Cyt c mRNA levels, increased bax/bcl-2 ratio, increased caspase3 mRNA and protein levels. Selenium treatment reduced the accumulation of Cd in the spleen, attenuates Cd-induced Nrf2 nuclear accumulation, enhanced antioxidant enzyme activities, ameliorated Cd-induced oxidative stress and apoptosis in the spleen. In summary, our results demonstrate that Se ameliorated spleen toxicity induced by cadmium by modulating the antioxidant system, independently of Nrf2-regulated antioxidant response pathway.


Assuntos
Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Cádmio/toxicidade , Galinhas/metabolismo , Poluentes Ambientais/toxicidade , Fator 2 Relacionado a NF-E2/metabolismo , Selênio/farmacologia , Baço/efeitos dos fármacos , Animais , Catalase/metabolismo , Relação Dose-Resposta a Droga , Estresse Oxidativo/efeitos dos fármacos , Selênio/metabolismo , Baço/metabolismo , Baço/patologia , Superóxido Dismutase/metabolismo
10.
Dev Comp Immunol ; 77: 30-37, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28735963

RESUMO

Selenium (Se) promotes immune cell differentiation and improves immune response. Antigen-presenting cells such as dendritic cells (DCs) play an important role in immune system, however, the impact of Se on DCs is still unclear. In this study, we successfully induced and cultured chicken DCs from peripheral blood mononuclear cells by incubating mononuclear cells with 50 ng/mL recombinant chicken granulocyte-macrophage colony stimulating factor and 10 ng/mL recombinant chicken interleukin-4 for total 9 days. In + Se group, we added 10-7 mol/L sodium selenite from the first day of cell culture. The results showed that Se supplementation expedited and increased the expression of cell surface markers including CD11c, CD40, CD86, and MHC II. Principal component analysis showed that the expression of selenoproteins SelW, SelK, Dio3, GPX1, GPX2, SelN, SelS, SelH in chicken DCs was highly correlated, and SelW had highest correlation with the cell surface markers MHC II and CD11c. In conclusion, Se accelerates the differentiation and maturation of chicken DCs. Se regulates the differentiation and maturation of chicken DCs by selenoproteins. Selenoproteins has closely correlated to surface markers of chicken DCs.


Assuntos
Células Dendríticas/imunologia , Selênio/metabolismo , Selenoproteínas/metabolismo , Animais , Apresentação de Antígeno , Antígenos CD/metabolismo , Diferenciação Celular , Células Cultivadas , Galinhas , Regulação da Expressão Gênica , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Interleucina-4/metabolismo , Selenoproteínas/genética , Selenito de Sódio/metabolismo
11.
J Vet Sci ; 18(3): 333-340, 2017 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-27586463

RESUMO

The aim of this study was to evaluate the influence of phosphorus (P) deficiency on the morphological and functional characteristics of erythrocytes in cows. Forty Holstein-Friesian dairy cows in mid-lactation were randomly divided into two groups of 20 each and were fed either a low-P diet (0.03% P/kg dry matter [DM]) or a control diet (0.36% P/kg DM). Red blood cell (RBC) indices results showed RBC and mean corpuscular hemoglobin decreased while mean corpuscular volume increased significantly (p < 0.05) in P-deficient cows. Erythrocyte morphology showed erythrocyte destruction in P-deficient cows. Erythrocytes' functional characteristics results showed total bilirubin and indirect bilirubin concentrations and aspartate transaminase and alanine transaminase activity levels in the serum of P-deficient cows were significantly higher than those in control diet-fed cows. Activities of superoxide dismutase and glutathione peroxidase in erythrocytes were lower, while the malondialdehyde content was greater, in P-deficient cows than in control diet-fed cows. Na+/K+-ATPase and Mg2+-ATPase activities were lower in P-deficient cows than in control diet-fed cows; however, Ca2+-ATPase activity was not significantly different. The phospholipid composition of the erythrocyte membrane changed and membrane fluidity rigidified in P-deficient cows. The results indicate that P deficiency might impair erythrocyte integrity and functional characteristics in cows.


Assuntos
Eritrócitos/patologia , Fósforo/deficiência , Alanina Transaminase/sangue , Animais , Aspartato Aminotransferases/sangue , Bilirrubina/sangue , Bovinos/sangue , Índices de Eritrócitos , Eritrócitos/fisiologia , Feminino , Glutationa Peroxidase/sangue , ATPase Trocadora de Sódio-Potássio/sangue , Superóxido Dismutase/sangue
12.
Oncotarget ; 7(36): 57618-57632, 2016 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-27557522

RESUMO

Selenium (Se) deficiency induces Ca2+ leak and calcification in mammal skeletal muscles; however, the exact mechanism is still unclear. In the present study, both Se-deficient chicken muscle models and selenoprotein W (SelW) gene knockdown myoblast and embryo models were used to study the mechanism. The results showed that Se deficiency-induced typical muscular injuries accompanied with Ca2+ leak and oxidative stress (P < 0.05) injured the ultrastructure of the sarcoplasmic reticulum (SR) and mitochondria; decreased the levels of the Ca2+ channels, SERCA, SLC8A, CACNA1S, ORAI1, STIM1, TRPC1, and TRPC3 (P < 0.05); and increased the levels of Ca2+ channel PMCA (P < 0.05). Similarly, SelW knockdown also induced Ca2+ leak from the SR and cytoplasm; increased mitochondrial Ca2+ levels and oxidative stress; injured SR and mitochondrial ultrastructure; decreased levels of SLC8A, CACNA1S, ORA1, TRPC1, and TRPC3; and caused abnormal activities of Ca2+ channels in response to inhibitors in myoblasts and chicken embryos. Thus, both Se deficiency and SelW knockdown induced Ca2+ leak, oxidative stress, and Ca2+ channel reduction. In addition, Ca2+ levels and the expression of the Ca2+ channels, RyR1, SERCA, CACNA1S, TRPC1, and TRPC3 were recovered to normal levels by N-acetyl-L-cysteine (NAC) treatment compared with SelW knockdown cells. Thus, with regard to the decreased Ca2+ channels, SelW knockdown closely correlated Se deficiency with Ca2+ leak in muscles. The redox regulation role of SelW is crucial in Se deficiency-induced Ca2+ leak in muscles.


Assuntos
Canais de Cálcio/química , Cálcio/química , Oxirredução , Selênio/deficiência , Selenoproteína W/química , Acetilcisteína/química , Animais , Antioxidantes/química , Calcinose , Cálcio/metabolismo , Embrião de Galinha , Galinhas , Citosol/metabolismo , Masculino , Potenciais da Membrana , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Estresse Oxidativo , Retículo Sarcoplasmático/metabolismo
13.
Biol Trace Elem Res ; 171(2): 419-426, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26463750

RESUMO

Selenium (Se) mainly performs its function through Se-containing proteins. Selenoprotein W (SelW), one member of the selenoprotein family, plays important roles in the normal function of the heart. To investigate the possible relationship between Se and SelW for the regulation of oxidative damage in chicken embryo myocardial cells, we treated myocardial cells with Se and H2O2. Then, the levels of lactate dehydrogenase (LDH) and 3,4-methylenedioxyamphetamine in the culture media, levels of SelW, inflammatory genes NF-κB, tumor necrosis factor (TNF)-α, p53, and the cell cycle were analyzed. Furthermore, the correlation between SelW and the levels of these factors was determined. The results indicated that Se treatment increased the expression of SelW (P < 0.05) and caused a downregulation of p53, NF-κB, and TNF-α (P < 0.05). In contrast, H2O2 increased the expression of p53, NF-κB, TNF-α, and LDH (P < 0.05) and induced early cell apoptosis, which was alleviated by treatment with Se. In addition, SelW had a positive correlation with the levels of inflammatory genes investigated. Taken together, our findings suggested that SelW is sensitive to Se levels and oxidative stress, and may play a role in the protective function of Se against oxidative damage and inflammation in chicken myocardial cells.


Assuntos
Miócitos Cardíacos/efeitos dos fármacos , Estresse Oxidativo , Selênio/farmacologia , Selenoproteína W/metabolismo , Animais , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Galinhas , Relação Dose-Resposta a Droga , Peróxido de Hidrogênio/antagonistas & inibidores , Peróxido de Hidrogênio/farmacologia , Miócitos Cardíacos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Selênio/administração & dosagem , Relação Estrutura-Atividade
14.
Biol Trace Elem Res ; 161(3): 328-33, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25283511

RESUMO

Cadmium could induce the damage of endoplasmic reticulum. In the present study, we investigated the effect of Cadmium on messenger RNA expressions of endoplasmic reticulum resident selenoproteins, selenoprotein K, selenoprotein N, selenoprotein S, and selenoprotein T, in cultured chicken lymphocytes and the antagonistic effect of Selenium. Chicken splenic lymphocytes were treated with 10(-7) mol/L Selenium, 10(-6) mol/L Cadmium, and the mixture of 10(-6) mol/L Selenium and 10(-7) mol/L Cadmium in the culture medium for 12, 24, 36, and 48 h, respectively. Then, we detected the messenger RNA expressions of selenoprotein K, selenoprotein N, selenoprotein S, and selenoprotein T by using real-time polymerase chain reaction method. The results indicated that Selenium significantly increased the expressions of selenoprotein K, selenoprotein N, selenoprotein S, and selenoprotein T, which were reduced by Cadmium in chicken splenic lymphocytes. It indicated that endoplasmic reticulum was one target of Cadmium toxication, and Cadmium toxicity might be related to the reduced expressions of selenoprotein K, selenoprotein N, selenoprotein S, and selenoprotein T in chicken lymphocytes. Selenium reserved the protective role by increasing the expressions of selenoprotein K, selenoprotein N, selenoprotein S, and selenoprotein T. The present study provided a useful clue to investigate the possible pathogenesis of Cadmium toxicity.


Assuntos
Cádmio/toxicidade , Galinhas/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Linfócitos/efeitos dos fármacos , Selênio/farmacologia , Selenoproteínas/biossíntese , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Galinhas/sangue , Retículo Endoplasmático/metabolismo , Linfócitos/ultraestrutura , RNA Mensageiro/biossíntese , Reação em Cadeia da Polimerase em Tempo Real
15.
Ecotoxicol Environ Saf ; 108: 142-51, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25062446

RESUMO

Pesticide exposure has repeatedly been associated with cancers, although the molecular mechanisms behind this association are largely undetermined. Abnormal DNA methylation plays a key role in the process of some disease. However, little was known about the effect of pesticides on DNA methylation in the common carp. In this study, we investigated the mRNA levels of DNA methyltransferases (DNMTs) and methyl-CpG-binding protein DNA-binding domain protein 2 (MBD2) as well as the DNA methylation levels in the liver, kidney and gill of the common carp (Cyprinus carpio L.) after 40-d exposure to atrazine (ATR) and chlorpyrifos (CPF) alone or in combination, and a 40-d recovery period. Juvenile common carp were exposed to various concentrations of ATR (at concentrations of 4.28, 42.8 and 428µg/L), CPF (1.16, 11.6 and 116µg/L), and an ATR/CPF mixture (at concentrations of 1.13, 11.3 and 113µg/L). The results revealed that the levels of genomic DNA methylation decreased in all tissues after 40d of exposure to ATR and CPF either individually or in combination. Moreover, the mRNA expression of DNMTs was down-regulated in all treatment groups. In contrast, the mRNA expression of MBD2 was up-regulated. These results demonstrated that long-term exposure to ATR, CPF and ATR/CPF mixtures could disrupt genomic DNA. It might imply that DNA methylation is involved in the toxicity caused by ATR and CPF in the common carp.


Assuntos
Atrazina/toxicidade , Carpas/metabolismo , Clorpirifos/toxicidade , Metilação de DNA/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Proteínas de Ligação a DNA/metabolismo , Interações Medicamentosas , Brânquias/efeitos dos fármacos , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Praguicidas/toxicidade , RNA Mensageiro/metabolismo
16.
Biol Trace Elem Res ; 159(1-3): 199-209, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24839000

RESUMO

Little is known about the influence of subchronic cadmium exposure on apoptosis in the immune organs of birds and the protective effects on apoptosis by selenium against cadmium. The aim of this study was to investigate the effect of subchronic cadmium exposure on nitric oxide and apoptosis in the immune organs of chicken and the protective roles of selenium against cadmium-induced apoptosis. Two hundred ten 30-day-old chickens were randomly assigned to three groups and were fed a basal diet, cadmium+selenium (as 150 mg of CdCl2 per kg of diet+10 mg of Na2SeO3 per kg of diet ) or cadmium (as 150 mg of CdCl2 per kg of diet) in basic diets for 15, 30, 45, and 60 days. Then, the production of nitric oxide, messenger RNA (mRNA level), and the activity of inducible nitric oxide synthase, ultrastructural changes, TUNEL assay, and flow cytometric analysis of apoptosis and Bcl-2 and p53 mRNA levels in the immune organs were examined. The results showed that cadmium exposure caused ultrastructural damage and increased production of nitric oxide, mRNA level, and activity of inducible nitric oxide synthase, the degree, and the number of apoptotic cells in a time-dependent manner. Cadmium exposure decreased Bcl-2 mRNA level and increased p53 mRNA level in a time-dependent manner. Selenium supplementation during dietary cadmium reduced the production of nitric oxide, the mRNA level, and activity of inducible nitric oxide synthase, ultrastructural damage, and apoptosis in the immune organs of chicken. It indicated that cadmium induced nitric oxide-mediated apoptosis of immune organs, and selenium played protective effects against cadmium-induced apoptosis in the immune organs of chickens.


Assuntos
Apoptose/efeitos dos fármacos , Cádmio/farmacologia , Óxido Nítrico/metabolismo , Selênio/farmacologia , Animais , Galinhas , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
17.
Biol Trace Elem Res ; 158(2): 176-85, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24573406

RESUMO

Selenium (Se) is an important dietary micronutrient with antioxidative roles. Cadmium (Cd), a ubiquitous environmental pollutant, is known to cause brain lesion in rats and humans. However, little is reported about the deleterious effects of subchronic Cd exposure on the brain of poultry and the protective roles on the brain by Se against Cd. The aim of this study was to investigate the protective effects of Se on Cd-induced brain damage in chickens. One hundred twenty 100-day-old chickens were randomly assigned to four groups and were fed a basal diet, or Se (as 10 mg Na2SeO3/kg dry weight of feed), Cd (as 150 mg CdCl2/kg dry weight of feed), or Cd + Se in their basic diets for 60 days. Then, concentrations of Cd and Se, production of nitric oxide (NO), messenger RNA (mRNA) level and activity of inducible NO synthase (iNOS), level of oxidative stress, and histological and ultrastructural changes of the cerebrum and cerebellum were examined. The results showed that Cd exposure significantly increased Cd accumulation, NO production, iNOS activities, iNOS mRNA level, and MDA content in the cerebrum and cerebellum. Cd treatment obviously decreased Se content and antioxidase activities and caused histopathological changes in the cerebrum and cerebellum. Se supplementation during dietary Cd obviously reduced Cd accumulation, NO production, mRNA level and activity of iNOS, oxidative stress, and histopathological damage in the cerebrum and cerebellum of chickens. It indicated that Se ameliorates Cd-induced brain damage in chickens by regulating iNOS-NO system changes, and oxidative stress induced by Cd and Se can serve as a potential therapeutic for Cd-induced brain lesion of chickens.


Assuntos
Dano Encefálico Crônico/induzido quimicamente , Dano Encefálico Crônico/prevenção & controle , Cádmio/toxicidade , Selênio/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Encéfalo/metabolismo , Dano Encefálico Crônico/enzimologia , Dano Encefálico Crônico/metabolismo , Cádmio/administração & dosagem , Galinhas , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Selênio/administração & dosagem
18.
Cell Stress Chaperones ; 18(6): 773-83, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23636703

RESUMO

The aim of this study was to investigate the effects of cold stress on the expression levels of heat shock proteins (Hsps90, 70, 60, 40, and 27) and inflammatory factors (iNOS, COX-2, NF-κB, TNF-α, and PTGEs) and oxidative indexes in hearts of chickens. Two hundred forty 15-day-old male chickens were randomly divided into 12 groups and kept at the temperature of 12 ± 1 °C for acute and chronic cold stress. There were one control group and five treatment groups for acute cold stress, three control groups, and three treatment groups for chronic cold stress. After cold stress, malondialdehyde level increased in chicken heart; the activity of superoxide dismutase and glutathione peroxidase in the heart first increased and then decreased. The inflammatory factors mRNA levels were increased in cold stress groups relative to control groups. The histopathological analysis showed that heart tissues were seriously injured in the cold stress group. Additionally, the mRNA levels of Hsps (70, 60, 40, and 27) increased significantly (P < 0.05) in the cold stress groups relative to the corresponding control group. Meanwhile, the mRNA level and protein expression of Hsp90 decreased significantly (P < 0.05) in the stress group, and showed a gradually decreasing tendency. These results suggested that the levels of inflammatory factors and Hsps expression levels in heart tissues can be influenced by cold stress. Hsps commonly played an important role in the protection of the heart after cold stress.


Assuntos
Proteínas de Choque Térmico/metabolismo , Miocárdio/metabolismo , Animais , Galinhas/metabolismo , Temperatura Baixa , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Proteínas de Choque Térmico/genética , Oxirredutases Intramoleculares/genética , Oxirredutases Intramoleculares/metabolismo , Masculino , Malondialdeído/metabolismo , Miocárdio/patologia , NF-kappa B/genética , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Prostaglandina-E Sintases , RNA Mensageiro/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
19.
Biochim Biophys Acta ; 1830(4): 3112-20, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23333634

RESUMO

BACKGROUND: Selenoprotein W (SelW) was thought to play an antioxidant role in mammals. Because chicken SelW has no cysteine (Cys) at the residue 37 (Cys37) that is required for the presumed antioxidant function in mammals, this study was conducted to determine whether chicken SelW possessed the same function. METHODS: Small interfering RNAs (siRNAs) technology was applied to suppress the SelW expression in chicken embryonic myoblasts. Thereafter, these myoblasts were treated with different concentrations of H2O2 and assayed for cell viability, apoptosis rate, reactive oxygen species (ROS) status, and expression levels of apoptosis-related genes and proteins (Bax, Bcl-2, and caspase-3). RESULTS: Silencing of the myoblast SelW gene decreased their cell viability, and increased their apoptosis rate and susceptibility to H2O2. While the knockout down of SelW up-regulated Bax and caspase-3 and down-regulated Bcl-2, the induced oxidative injuries were alleviated by treatment with a ROS scavenger, N-acetyl-l-cysteine (NAC). CONCLUSION: Chicken SelW protected embryonic myoblasts against cell apoptosis mediated by endogenous and exogenous H2O2. GENERAL SIGNIFICANCE: Chicken SelW possesses antioxidant function similar to the mammalian homologues despite the lack of Cys37 in the peptide.


Assuntos
Antioxidantes/farmacologia , Mioblastos/efeitos dos fármacos , Selenoproteína W/farmacologia , Acetilcisteína/farmacologia , Animais , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Galinhas , Mioblastos/metabolismo
20.
Toxicol Lett ; 214(2): 99-108, 2012 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-22939916

RESUMO

Exposure to high levels of manganese (Mn) can result in cardiotoxicity in animals. However, little is known about the effect of excess Mn on poultry hearts. The aim of this study was to investigate the effect of dietary Mn on chicken cardiac injuries and the possible mechanisms of this process. In the present study, 400 fifty-day-old Hy-line brown cocks were randomly divided into four groups, and were fed either a commercial diet (containing 100mg/kg Mn) or a Mn-supplemented diet containing 600mg/kg, 900mg/kg, or 1800mg/kg Mn for 30, 60 or 90 days, respectively. Next, we examined several biomarkers of cardiac injury, including biochemical blood serum analyses, electrocardiogram assays, histological analyses, ultra-structural assays and apoptosis assays. To investigate the possible mechanisms of Mn-induced cardiotoxicity, we examined the effect of MnCl(2) on mitochondrial function and metal ion homeostasis. We found that subchronic MnCl(2) exposure induced damage in chicken hearts. Further investigations indicated that possible mechanisms for Mn-induced chicken cardiac injury included the disruption of mitochondrial metabolism and the alteration of ion homeostasis.


Assuntos
Coração/efeitos dos fármacos , Manganês/toxicidade , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Miocárdio/metabolismo , Adenosina Trifosfatases/análise , Adenosina Trifosfatases/metabolismo , Animais , Apoptose/fisiologia , Galinhas , Creatina Quinase/sangue , Eletrocardiografia/veterinária , Eletrólitos/metabolismo , Histocitoquímica/veterinária , Marcação In Situ das Extremidades Cortadas/veterinária , Masculino , Microscopia Eletrônica de Transmissão/veterinária , Mitocôndrias Cardíacas/enzimologia , Miocárdio/enzimologia , Distribuição Aleatória , Troponina T/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA