Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1117310, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37063846

RESUMO

Mounting evidence indicates that inhibition of microglial activation and neuronal pyroptosis plays important roles in brain function recovery after subarachnoid hemorrhage (SAH). LDC7559 is a newly discovered gasdermin D (GSDMD) inhibitor. Previous studies have demonstrated that LDC7559 could inhibit microglial proliferation and pyroptosis. However, the beneficial effects of LDC7559 on SAH remain obscure. Based on this background, we investigated the potential role and the mechanism of LDC7559 on SAH-induced brain damage both in vivo and in vitro. The findings revealed that microglial activation and neuronal pyroptosis were evidently increased after SAH, which could be markedly suppressed by LDC7559 both in vivo and in vitro. Meanwhile, LDC7559 treatment reduced neuronal apoptosis and improved behavior function. Mechanistically, LDC7559 decreased the levels of GSDMD and cleaved GSDMD after SAH. In contrast, nod-like receptor pyrin domain-containing 3 (NLRP3) inflammasome activation by nigericin increased GSDMD-mediated pyroptosis and abated the beneficial effects of LDC7559 on SAH-induced brain damage. However, LDC7559 treatment did not significantly affect the expression of NLRP3 after SAH. Taken together, LDC7559 might suppress neuronal pyroptosis and microglial activation after SAH by inhibiting GSDMD, thereby promoting brain functional recovery.


Assuntos
Lesões Encefálicas , Gasderminas , Hemorragia Subaracnóidea , Humanos , Lesões Encefálicas/metabolismo , Inflamassomos/metabolismo , Microglia/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Piroptose , Hemorragia Subaracnóidea/metabolismo , Gasderminas/antagonistas & inibidores
2.
J Neurotrauma ; 40(13-14): 1495-1509, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37029898

RESUMO

Microglia-mediated neuroinflammatory responses play important roles in secondary neurological injury after traumatic brain injury (TBI). The TGF-ß pathway participates in the regulation of M1/M2 phenotype transformation of microglia. TGF-ß can activate the Smad pathway by binding to TGF-ßRs, which is regulated by the cleavage function of A disintegrin and metalloproteinase 17 (ADAM17). However, the role of ADAM17 and the associated signaling pathways in the pathological process after TBI remain unclear. Herein, we assessed the transformation of microglia M1/M2 phenotype polarization and the neuroinflammatory response after the inhibition of ADAM17. The formation of TGF-ßRs and TGF-ß1/TGF-ßRII complexes on microglia were detected to evaluate the effect of ADAM17 inhibition on the TGF-ß1/Smad pathway. ADAM17 was highly expressed after TBI and mainly located in the microglia. the inhibition of ADAM17 improved neurological function after TBI. The neuroprotective effect of ADAM17 inhibition was related to a shift from the M1 microglial phenotype to the M2 microglial phenotype, thus reducing TBI-induced neuroinflammation. ADAM17 inhibition increased expression of TGF-ßRs on the microglia membrane, promoted formation of TGF-ß1/TGF-ßRII complexes, and induced intranuclear translocation of Smads, which activated the TGF-ß/Smad pathway. In conclusion, our study suggested that ADAM17 inhibition regulated microglia M1/M2 phenotype polarization through the TGF-ß1/Smad pathway and influenced the neuroinflammatory response after TBI.


Assuntos
Proteína ADAM17 , Lesões Encefálicas Traumáticas , Microglia , Humanos , Proteína ADAM17/metabolismo , Lesões Encefálicas Traumáticas/complicações , Inflamação/metabolismo , Microglia/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA