Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38673820

RESUMO

C-TERMINALLY ENCODED PEPTIDEs (CEPs) are a class of peptide hormones that have been shown in previous studies to play an important role in regulating the development and response to abiotic stress in model plants. However, their role in cotton is not well understood. In this study, we identified 54, 59, 34, and 35 CEP genes from Gossypium hirsutum (2n = 4x = 52, AD1), G. barbadense (AD2), G. arboreum (2n = 2X = 26, A2), and G. raimondii (2n = 2X = 26, D5), respectively. Sequence alignment and phylogenetic analyses indicate that cotton CEP proteins can be categorized into two subgroups based on the differentiation of their CEP domain. Chromosomal distribution and collinearity analyses show that most of the cotton CEP genes are situated in gene clusters, suggesting that segmental duplication may be a critical factor in CEP gene expansion. Expression pattern analyses showed that cotton CEP genes are widely expressed throughout the plant, with some genes exhibiting specific expression patterns. Ectopic expression of GhCEP46-D05 in Arabidopsis led to a significant reduction in both root length and seed size, resulting in a dwarf phenotype. Similarly, overexpression of GhCEP46-D05 in cotton resulted in reduced internode length and plant height. These findings provide a foundation for further investigation into the function of cotton CEP genes and their potential role in cotton breeding.


Assuntos
Regulação da Expressão Gênica de Plantas , Gossypium , Família Multigênica , Filogenia , Proteínas de Plantas , Gossypium/genética , Gossypium/crescimento & desenvolvimento , Gossypium/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Cromossomos de Plantas/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Estudo de Associação Genômica Ampla , Hormônios Peptídicos/genética , Hormônios Peptídicos/metabolismo , Desenvolvimento Vegetal/genética , Peptídeos/genética , Peptídeos/metabolismo , Mapeamento Cromossômico , Genes de Plantas
2.
Carbohydr Polym ; 305: 120538, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36737190

RESUMO

Oil pollution has caused more and more serious damages to the environment, especially to water. Oil and water separation technologies based on high-performance absorbing materials have attracted extensive attentions. Herein, elasticity-enhanced bacterial cellulose (BC) aerogel is synthesized for oil/water separation through thermochemical vapor deposition (CVD) catalyzed by 1, 2, 3, 4-butanetetracarboxylic acid (BTCA). BTCA has two functions, namely, esterification with BC and catalyzing CVD. The prepared aerogel could be recovered soon after being compressed and the elastic recovery was >90 % at set maximum deformation of 80 %. And, it also exhibits vigorous fatigue resistance with an elastic deformation of >80 % after 50 cycles. The high elastic and hydrophobic aerogel is very suitable for absorbing and desorbing oils by simple mechanical squeezing. The adsorption capacity for n-hexane and dichloroethane maintain 87 % and 81 % after 50 cycles, respectively, which implies robust reusability. Importantly, the CVD could also be catalyzed by other solid acids such as citric acid and vitamin C. This design and fabrication method offers a novel avenue for the preparation of hydrophobic bacterial cellulose aerogel with high elasticity.


Assuntos
Doenças Cardiovasculares , Celulose , Humanos , Celulose/química , Óleos/química , Catálise
3.
Food Chem X ; 16: 100512, 2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36519110

RESUMO

Non-enzymatic browning induced by polyphenol oxidation is an essential problem during the processing and storage of fruit and vegetable products. Here, the non-enzymatic browning mechanism between catechin (CAT), chlorogenic acid (CQA) and their corresponding quinones was investigated in model systems during the 32-d long-term storage. The results showed that CAT and catechin quinone (CATQ), which contains both A ring with a resorcinol structure and an o-diphenol B ring, are important precursors for browning, while chlorogenic acid (CQA) has a minor effect on browning. Chlorogenic acid quinone (CQAQ)-mediated CAT oxidation (kCAT-degradation = 0.0458 mol·L-1·d-1) was faster than CAT autoxidation (kCAT-degradation = 0.0006 mol·L-1·d-1), and there was no significant difference between CQAQ-mediated CAT oxidation and CATQ-mediated CQA oxidation. These indicate that CQAQ oxidizes CAT to CATQ quickly, and CATQ reacts with CAT subsequently through complex reactions to produce brown pigments in model systems during long-term storage.

4.
Genes (Basel) ; 13(12)2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36553581

RESUMO

Filamin protein is characterized by an N-terminal actin-binding domain that is followed by 24 Ig (immunoglobulin)-like repeats, which act as hubs for interactions with a variety of proteins. In humans, this family has been found to be involved in cancer cell invasion and metastasis and can be involved in a variety of growth signal transduction processes, but it is less studied in plants. Therefore, in this study, 54 Filamin gene family members from 23 plant species were investigated and divided into two subfamilies: FLMN and GEX2. Subcellular localization showed that most of the Filamin gene family members were located in the cell membrane. A total of 47 Filamin gene pairs were identified, most of which were whole-genome copies. Through the analyses of cis-acting elements, expression patterns and quantitative fluorescence, it was found that GH_ A02G0519 and GH_ D02G0539 are mainly expressed in the reproductive organs of upland cotton, and their interacting proteins are also related to the fertilization process, whereas GH_A02G0216 and GH_D02G0235 were related to stress. Thus, it is speculated that two genes of the GEX2 subfamily (GH_A02G0519 and GH_D02G0539) may be involved in the reproductive development of cotton and may affect the fertilization process of cotton. This study provides a theoretical basis for the further study of the cotton Filamin gene family.


Assuntos
Genoma de Planta , Gossypium , Filaminas/genética , Filaminas/metabolismo , Perfilação da Expressão Gênica , Gossypium/genética , Filogenia
5.
Int J Biol Macromol ; 222(Pt A): 938-949, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36183757

RESUMO

The complex chemical structure of polypeptide and the imperfection of processing technology cause the mechanical properties of regenerated keratin to be hard and brittle. This defect seriously affects the application prospects of keratin materials. To solve the above problems, α-lipoic acid modified keratin (KER) was blended with Polyamide 6 (PA6) and prepared into composite fibers via the wet-spinning method in this work. The spinnability and spinning conditions of the KER/PA6 blend solution were analyzed by rheological theory. The results illustrated that keratin solution will easily form a gel state under certain temperatures and concentrations, which was not conducive to the preparation of regenerated fiber. When the temperature was 45 °C and the mass fraction was 10 %, the viscosity and rheology of the solution were appropriate. The rheological properties of the blend solution showed that too much keratin would make the solution easy to gel, which was not conducive to the preparation of regenerated fibers and may affect the fiber properties. On this basis, the prepared composite fibers were characterized to explore the macromolecular aggregation state of keratin and PA6 in fibers. FT-IR and XRD results proved that there was no chemical reaction between keratin and PA6 in the composite fibers, which belonged to physical blending. At the same time, the two polymers had good compatibility and can be blended at the molecular level. SEM, DSC, and tensile strength test results indicated that when the proportion of keratin was too high, the structure and properties of the composite fibers will have obvious defects, which was consistent with the rheological analysis. Therefore, the blend ratio of keratin/PA6 was determined to be 3:7. Under this condition, the fibers exhibited a homogeneous structure and good thermal properties, especially its mechanical properties were close to wool fibers. The KER/PA6 composite fibers show important research value and can also provide technical reference for the development of regenerated biomass materials.


Assuntos
Queratinas , Nylons , Animais , Queratinas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Queratina-6 , Polímeros/química , Reologia
6.
Genes (Basel) ; 12(12)2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34946950

RESUMO

Fertilization is essential to sexual reproduction of flowering plants. EC1 (EGG CELL 1) proteins have a conserved cysteine spacer characteristic and play a crucial role in double fertilization process in many plant species. However, to date, the role of EC1 gene family in cotton is fully unknown. Hence, detailed bioinformatics analysis was explored to elucidate the biological mechanisms of EC1 gene family in cotton. In this study, we identified 66 genes in 10 plant species in which a total of 39 EC1 genes were detected from cotton genome. Phylogenetic analysis clustered the identified EC1 genes into three families (I-III) and all of them contain Prolamin-like domains. A good collinearity was observed in the synteny analysis of the orthologs from cotton genomes. Whole-genome duplication was determined to be one of the major impetuses for the expansion of the EC1 gene family during the process of evolution. qRT-PCR analysis showed that EC1 genes were highly expressed in reproductive tissues under multiple stresses, signifying their potential role in enhancing stress tolerance or responses. Additionally, gene interaction networks showed that EC1 genes may be involved in cell stress and response transcriptional regulator in the synergid cells and activate the expression of genes required for pollen tube guidance. Our results provide novel functional insights into the evolution and functional elucidation of EC1 gene family in cotton.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , Gossypium/genética , China , Evolução Molecular , Flores/genética , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Genoma de Planta/genética , Família Multigênica/genética , Filogenia , Proteínas de Plantas/genética , Reprodução/genética , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA