Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Theranostics ; 8(10): 2846-2861, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29774079

RESUMO

Transforming growth factor-ß (TGF-ß) has received much attention as a major inducer of epithelial-mesenchymal transition (EMT) during cancer progression, mainly by activating a set of pleiotropic transcription factors including SNAI2/Slug. However, the involvement of long non-coding RNAs (lncRNAs) in TGF-ß-induced Slug activation and EMT remains largely unknown. Methods: In this study, we used microarray analysis to compare lncRNA expression profiles between TGF-ß treated and untreated breast cancer cells. Then, the clinical significance of lncRNAs in breast cancer was investigated by qPCR and Kaplan-Meier survival analysis. The molecular mechanisms and EMT-promoting effects in vitro were analyzed by confocal laser microscopy, Western blotting, chromosome conformation capture (3C), chromatin isolation by RNA purification (ChIRP), ChIP, luciferase reporter assay and transwell migration assay. Lastly, the pro-metastatic effects in vivo were evaluated by bioluminescent imaging and hematoxylin and eosin (H&E) staining. Results: We observed that TGF-ß induced genome-wide changes in lncRNA levels in breast cancer cells, among which AC026904.1 and UCA1 were highly expressed in metastatic breast cancer and closely associated with poor prognosis. Mechanistic study revealed that AC026904.1 and UCA1 were upregulated by non-canonical and canonical TGF-ß pathways, respectively. Further analysis showed that AC026904.1 functions as an enhancer RNA in the nucleus, whereas UCA1 exerts a competitive endogenous RNA (ceRNA) activity in the cytoplasm. In addition, the biological functions of these two lncRNAs converged on the activation and maintenance of Slug, constituting a one-two punch in promoting EMT and tumor metastasis. Conclusion: These findings uncover for the first time that AC026904.1 and UCA1 could cooperatively upregulate Slug expression at both transcriptional and post-transcriptional levels, exerting critical roles in TGF-ß-induced EMT. The present work provides new evidence that lncRNAs function as key regulators of EMT and hold great promise to be used as novel biomarkers and therapeutic targets for metastatic breast cancer.


Assuntos
Neoplasias da Mama/genética , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , RNA Longo não Codificante/genética , Fatores de Transcrição da Família Snail/metabolismo , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Nus , RNA Longo não Codificante/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Regulação para Cima
2.
Cell Tissue Res ; 364(3): 599-610, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26841878

RESUMO

To investigate the role of macrophages in oxygen-induced retinal neovascularization (NV) in mice, particularly the involvement of bone marrow-derived cells (BMCs) and the underlying mechanisms, BMCs from green fluorescent protein (GFP) transgenic mice were transplanted into postnatal day (P) 1 mice after irradiation. The mice were exposed to 75 % oxygen from P7 to P12 to initiate oxygen-induced retinopathy (OIR). The macrophages were depleted by injection of clodronate-liposomes (lip) intraperitoneally. The eyes were collected at P12 and P17. Retinal flatmounts and histopathological cross-sections were performed to analyze the severity of retinal NV and BMC recruitment. BMCs immunopositive for CD31 (PECAM-1; endothelial cell marker) and α-SMA (smooth muscle cell marker) antigens were detected using a confocal microscope. Expression of vascular endothelial growth factor (VEGF) and stromal cell-derived factor-1 (SDF-1) mRNA was detected by RT-PCR. The VEGF, SDF-1, CXCR4 and CD45 protein expression was detected by western blot examination. The retinal avascular area in OIR mice at P12 was unaffected after macrophage depletion carried out twice (38.27 ± 1.92 % reduction) using clodronate-lip. The retinal avascular area and the NV area at P17 were reduced after macrophage depletion four times (79.53 ± 1.02 % reduction); these findings were supported by retinal flatmounts and histopathological cross-sections. Macrophage depletion led to significant inhibition of BMC recruitment into the NV tufts at P17, with decreased expression of retinal VEGF, SDF-1, CXCR4 and CD45. The recruited BMCs differentiated primarily into CD31-positive endothelial cells (ECs) and α-SMA-positive smooth muscle cells (SMCs). This study suggested that macrophages promoted the vasculogenesis of retinal NV, particularly the contribution of BMCs in the mouse OIR model, which might be triggered by VEGF and SDF-1 production.


Assuntos
Macrófagos/metabolismo , Neovascularização Retiniana/patologia , Retinopatia da Prematuridade/patologia , Administração Intravenosa , Animais , Animais Recém-Nascidos , Células da Medula Óssea/patologia , Diferenciação Celular , Movimento Celular , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Oxigênio , Retina/patologia , Neovascularização Retiniana/complicações , Retinopatia da Prematuridade/complicações
3.
Biomaterials ; 35(3): 993-1003, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24383128

RESUMO

NDRG2 mRNA and protein levels can be upregulated in a p53-dependent manner. NDRG2 enhances p53-mediated apoptosis, whereas overexpression of NDRG2 suppresses tumor cell growth, regardless of whether p53 is mutated. However, the complicated mechanism by which NDRG2 suppresses tumor cell growth and enhances apoptosis mediated by p53 is not fully understood. Here, we demonstrated that Ad-NDRG2 enhanced the apoptosis of HepG2 cells (wild-type p53). Additionally, Ad-NDRG2 combined with rAd-p53 enhanced the apoptosis of Huh7 cells (mutant p53) after chemotherapy, and the expression of the ERCC6 gene (Cockayne syndrome group B protein gene) was suppressed in this process. Ad-NDRG2 combined with rAd-p53 induced the apoptosis of tumor cells (HepG2 and Huh7 cells); however, apoptosis was attenuated after transfection with ERCC6. Our results indicate that Ad-NDRG2 enhances the p53-mediated apoptosis of hepatocarcinoma cells (HepG2 and Huh7) by attenuating the nucleotide excision repair capacity (i.e., by downregulating ERCC6), and ERCC6 is a NDRG2-inducible target gene that is involved in the p53-mediated apoptosis pathway.


Assuntos
Adenoviridae/genética , Apoptose , Carcinoma Hepatocelular/genética , Reparo do DNA , Neoplasias Hepáticas/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/genética , Animais , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , DNA Helicases/genética , Enzimas Reparadoras do DNA/genética , Regulação Neoplásica da Expressão Gênica , Células Hep G2 , Humanos , Fígado/metabolismo , Fígado/patologia , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Nus , Proteínas de Ligação a Poli-ADP-Ribose , Transfecção , Proteína Supressora de Tumor p53/genética , Regulação para Cima
4.
Hepatology ; 59(5): 1850-63, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24002871

RESUMO

UNLABELLED: The MYC oncogene is overexpressed in hepatocellular carcinoma (HCC) and has been associated with widespread microRNA (miRNA) repression; however, the underlying mechanisms are largely unknown. Here, we report that the c-Myc oncogenic transcription factor physically interacts with enhancer of zeste homolog 2 (EZH2), a core enzymatic unit of polycomb repressive complex 2 (PRC2). Furthermore, miR-101, an important tumor-suppressive miRNA in human hepatocarcinomas, is epigenetically repressed by PRC2 complex in a c-Myc-mediated manner. miR-101, in turn, inhibits the expression of two subunits of PRC2 (EZH2 and EED), thus creating a double-negative feedback loop that regulates the process of hepatocarcinogenesis. Restoration of miR-101 expression suppresses multiple malignant phenotypes of HCC cells by coordinate repression of a cohort of oncogenes, including STMN1, JUNB, and CXCR7, and further increases expression of endogenous miR-101 by inhibition of PRC2 activation. In addition, co-overexpression of c-Myc and EZH2 in HCC samples was closely associated with lower expression of miR-101 (P < 0.0001) and poorer prognosis of HCC patients (P < 0.01). CONCLUSIONS: c-Myc collaborates with EZH2-containing PRC2 complex in silencing tumor-suppressive miRNAs during hepatocarcinogenesis and provides promising therapeutic candidates for human HCC.


Assuntos
Carcinoma Hepatocelular/genética , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Neoplasias Hepáticas/genética , MicroRNAs/fisiologia , Proteínas Proto-Oncogênicas c-myc/fisiologia , Animais , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Metilação de DNA , Proteína Potenciadora do Homólogo 2 de Zeste , Humanos , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos BALB C , MicroRNAs/antagonistas & inibidores , Complexo Repressor Polycomb 2/metabolismo , Complexo Repressor Polycomb 2/fisiologia , Receptores CXCR/fisiologia
5.
Carcinogenesis ; 34(8): 1773-81, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23615404

RESUMO

The POU transcription factor OCT4 is a pleiotropic regulator of gene expression in embryonic stem cells. Recent studies demonstrated that OCT4 is aberrantly expressed in multiple types of human cancer; however, the underlying molecular mechanism remains largely unknown. In this study, we report that OCT4-pg4, a pseudogene of OCT4, is abnormally activated in hepatocellular carcinoma (HCC). The expression level of OCT4-pg4 is positively correlated with that of OCT4, and both gene transcripts can be directly targeted by a tumor-suppressive micro RNA miR-145. We find that the non-coding RNA OCT4-pg4 is biologically active, as it can upregulate OCT4 protein level in HCC. Mechanistic analysis revealed that OCT4-pg4 functions as a natural micro RNA sponge to protect OCT4 transcript from being inhibited by miR-145. In addition, our study also showed that OCT4-pg4 can promote growth and tumorigenicity of HCC cells, thus exerting an oncogenic role in hepatocarcinogenesis. Furthermore, survival analysis suggests that high OCT4-pg4 level is significantly correlated with poor prognosis of HCC patients. Taken together, our finding adds a new layer of post-transcriptional regulation of OCT4 and sheds new light on the treatment of human HCC.


Assuntos
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , MicroRNAs/genética , Fator 3 de Transcrição de Octâmero/genética , Pseudogenes , Animais , Carcinogênese/genética , Carcinogênese/patologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células , Células HEK293 , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/metabolismo , Fator 3 de Transcrição de Octâmero/biossíntese , Prognóstico , Processamento Pós-Transcricional do RNA , Transcrição Gênica , Regulação para Cima
6.
PLoS One ; 7(10): e47600, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23094067

RESUMO

Choroidal neovascularisation (CNV) that occurs as a result of age-related macular degeneration (AMD) causes severe vision loss among elderly patients. The relationship between diabetes and CNV remains controversial. However, oxidative stress plays a critical role in the pathogenesis of both AMD and diabetes. In the present study, we investigated the influence of diabetes on experimentally induced CNV and on the underlying molecular mechanisms of CNV. CNV was induced via photocoagulation in the ocular fundi of mice with streptozotocin-induced diabetes. The effect of diabetes on the severity of CNV was measured. An immunofluorescence technique was used to determine the levels of oxidative DNA damage by anti-8-hydroxy-2-deoxyguanosine (8-OHdG) antibody, the protein expression of phosphorylated signal transducer and activator of transcription 3 (p-STAT3) and vascular endothelial growth factor (VEGF), in mice with CNV. The production of reactive oxygen species (ROS) in retinal pigment epithelial (RPE) cells that had been cultured under high glucose was quantitated using the 2',7'-dichlorofluorescein diacetate (DCFH-DA) method. p-STAT3 expression was examined using Western blot analysis. RT-PCR and ELISA processes were used to detect VEGF expression. Hyperglycaemia exacerbated the development of CNV in mice. Oxidative stress levels and the expression of p-STAT3 and VEGF were highly elevated both in mice and in cultured RPE cells. Treatment with the antioxidant compound N-acetyl-cysteine (NAC) rescued the severity of CNV in diabetic mice. NAC also inhibited the overexpression of p-STAT3 and VEGF in CNV and in RPE cells. The JAK-2/STAT3 pathway inhibitor AG490 blocked VEGF expression but had no effect on the production of ROS in vitro. These results suggest that hyperglycaemia promotes the development of CNV by inducing oxidative stress, which in turn activates STAT3 signalling in RPE cells. Antioxidant supplementation helped attenuate the development of CNV. Thus, our results reveal a potential strategy for the treatment and prevention of diseases involving CNV.


Assuntos
Corioide/irrigação sanguínea , Corioide/metabolismo , Neovascularização de Coroide/metabolismo , Hiperglicemia/patologia , Epitélio Pigmentado da Retina/metabolismo , Fator de Transcrição STAT3/genética , Acetilcisteína/farmacologia , Animais , Antioxidantes/farmacologia , Corioide/efeitos dos fármacos , Neovascularização de Coroide/tratamento farmacológico , Neovascularização de Coroide/etiologia , Neovascularização de Coroide/patologia , Dano ao DNA , Diabetes Mellitus Experimental , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Expressão Gênica/efeitos dos fármacos , Hiperglicemia/induzido quimicamente , Hiperglicemia/tratamento farmacológico , Hiperglicemia/metabolismo , Fotocoagulação/efeitos adversos , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Fosforilação , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Retina/efeitos dos fármacos , Retina/metabolismo , Retina/patologia , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/patologia , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/metabolismo , Índice de Gravidade de Doença , Transdução de Sinais/efeitos dos fármacos , Estreptozocina , Tirfostinas/farmacologia , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
7.
PLoS One ; 7(9): e45133, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23028803

RESUMO

Histone deacetylase (HDAC) inhibitors are emerging as a novel class of anti-tumor agents and have manifested the ability to decrease proliferation and increase apoptosis in different cancer cells. A significant number of genes have been identified as potential effectors responsible for the anti-tumor function of HDAC inhibitor. However, the molecular mechanisms of these HDAC inhibitors in this process remain largely undefined. In the current study, we searched for microRNAs (miRs) that were affected by HDAC inhibitor trichostatin (TSA) and investigated their effects in endometrial cancer (EMC) cells. Our data showed that TSA significantly inhibited the growth of EMC cells and induced their apoptosis. Among the miRNAs that altered in the presence of TSA, the miR-106b-93-25 cluster, together with its host gene MCM7, were obviously down-regulated in EMC cells. p21 and BIM, which were identified as target genes of miR-106b-93-25 cluster, increased in TSA treated tumor cells and were responsible for cell cycle arrest and apoptosis. We further identified MYC as a regulator of miR-106b-93-25 cluster and demonstrated its down-regulation in the presence of TSA resulted in the reduction of miR-106b-93-25 cluster and up-regulation of p21 and BIM. More important, we found miR-106b-93-25 cluster was up-regulated in clinical EMC samples in association with the overexpression of MCM7 and MYC and the down-regulation of p21 and BIM. Thus our studies strongly indicated TSA inhibited EMC cell growth and induced cell apoptosis and cell cycle arrest at least partially through the down-regulation of the miR-106b-93-25 cluster and up-regulation of it's target genes p21 and BIM via MYC.


Assuntos
Apoptose/efeitos dos fármacos , Regulação para Baixo/genética , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/patologia , Ácidos Hidroxâmicos/farmacologia , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-myc/genética , Apoptose/genética , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteína 11 Semelhante a Bcl-2 , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo/efeitos dos fármacos , Elementos E-Box/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , MicroRNAs/metabolismo , Componente 7 do Complexo de Manutenção de Minicromossomo , Família Multigênica/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
8.
PLoS One ; 7(7): e40639, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22829880

RESUMO

Perforin-1 (PRF), a cytotoxic lymphocyte pore-forming protein, plays an important role in the action of cytotoxic T cells and natural killer cells in that it causes the lysis of abnormal body cells and the elimination of virus-infected cells and tumors. Upon degranulation, PRF inserts itself into the target cell's plasma membrane, forming a pore. The subsequent translocation of pro-apoptotic granzymes (including granzyme B, A, M et al.) into the cytoplasm provides the proteases with access to numerous protein substrates that promote apoptosis after cleavage. These proteases are believed to be the main executioners of target cell apoptosis. Although the PRF and granzyme components are both critical to this process and in some way involved in inducing cell death in target cells, the inhibition of tumor growth could still be efficient in granzyme-deficient mice. It is unclear whether PRF alone can suppress tumors. In this study, we discovered that forced ectopic expression of PRF alone, in the absence of granzymes, could mediate cell death in cancer cells. Notably, transient expression of both full-length and truncated active-form PRF in human Hep G2, SK-BR-3, and HeLa cells was found to induce apparent cell growth inhibition and cell death, as evidenced by chromosome condensation and DNA fragmentation, increased caspase-3 activity, and the release of apoptosis inducing factor (AIF) and cytochrome c from the mitochondria. This PRF-induced cell death could be abrogated by pan-caspase inhibitor (Z-VAD) and mitochondria protector (TAT-BH4). The implication of these results is that ectopically expressed PRF has apoptosis-inducing abilities, and PRF alone is sufficient to induce apoptotic cell death in cells with ectopic expression. Taking this into consideration, our results suggest the possibility of using PRF as a pro-apoptotic gene for tumor therapeutics.


Assuntos
Apoptose/fisiologia , Caspase 3/metabolismo , Citocromos c/metabolismo , Perforina/metabolismo , Apoptose/genética , Fator de Indução de Apoptose/metabolismo , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular Tumoral , Imunofluorescência , Células HeLa , Células Hep G2 , Humanos , Marcação In Situ das Extremidades Cortadas , Perforina/genética , Fosfatidilserinas/farmacologia
9.
Mol Cell Biochem ; 364(1-2): 209-16, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22278385

RESUMO

Parkinson's disease (PD) is characterized by a progressive degeneration of dopaminergic neurons in the substantia nigra. Oxidative stress and neural degeneration are suggested to be involved in the pathogenesis of PD. Previous studies have revealed that Astragaloside IV (AS-IV) can reduce inflammation and oxidation, making it a potential therapeutic agent for neurodegenerative disease. In this study, we investigated whether AS-IV protect against 1-methyl-4-phenylpyridnium ion (MPP(+))-induced dopaminergic neurotoxicity in SH-SY5Y cells and determined the mechanism of AS-IV neuroprotection. We found that pretreatment with AS-IV significantly reversed the loss of cell viability, nuclear condensation, the generation of intracellular reactive oxygen species (ROS), and the increase in Bax/Bcl-2 ratio and the activity of caspase-3 induced by MPP(+). Our study suggests that the neuroprotective effect of AS-IV is related to mechanisms including ROS production and the inhibition of Bax-mediated pathway. The present study supports the notion that AS-IV may be a promising neuroprotective agent for the treatment of neurodegenerative disorders such as PD.


Assuntos
Doença de Parkinson/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Saponinas/farmacologia , Triterpenos/farmacologia , Proteína X Associada a bcl-2/metabolismo , 1-Metil-4-fenilpiridínio/farmacologia , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Regulação da Expressão Gênica , Humanos , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Doença de Parkinson/patologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteína X Associada a bcl-2/genética
10.
Biochim Biophys Acta ; 1822(2): 301-13, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22138128

RESUMO

Many pro-apoptotic factors, such as nuclear factor-kappa B (NF-κB) and Fas, play crucial roles in the process of Leydig cell apoptosis, ultimately leading to male sterility, such as in Sertoli cell only syndrome (SCO) and hypospermatogenesis. However, the molecular mechanism of such apoptosis is unclear. Recent reports on N-myc downstream-regulated gene 2 (ndrg2) have suggested that it is involved in cellular differentiation, development, and apoptosis. The unique expression of NDRG2 in SCO and hypospermatogenic testis suggests its pivotal role in those diseases. In this study, we analyzed NDRG2 expression profiles in the testes of normal spermatogenesis patients, hypospermatogenesis patients, and SCO patients, as well as in vivo and in vitro models, which were Sprague-Dawley rats and the Leydig cell line TM3 treated with the Leydig cell-specific toxicant ethane-dimethanesulfonate (EDS). Our data confirm that NDRG2 is normally exclusively located in the cytoplasm of Leydig cells and is up-regulated and translocates into the nucleus under apoptotic stimulations in human and murine testis. Meanwhile, transcription factor NF-κB was activated by EDS administration, bound to the ndrg2 promoter, and further increased in expression, effects that were abolished by NF-κB inhibitor Pyrrolidine dithiocarbamate (PDTC). Furthermore, siRNA knock-down of ndrg2 led to increased proliferative or decreased apoptotic TM3 cells, while over-expression of ndrg2 had the reverse effect. This study reveals that ndrg2 is a novel gene that participates in Leydig cell apoptosis, with essential functions in testicular cells, and suggests its possible role in apoptotic Leydig cells and male fertility.


Assuntos
Apoptose/genética , Infertilidade Masculina/metabolismo , Células Intersticiais do Testículo/metabolismo , NF-kappa B/metabolismo , Proteínas/genética , Proteínas Supressoras de Tumor/genética , Proteínas Adaptadoras de Transdução de Sinal , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/genética , Núcleo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Humanos , Infertilidade Masculina/genética , Células Intersticiais do Testículo/citologia , Células Intersticiais do Testículo/efeitos dos fármacos , Masculino , Mesilatos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Regiões Promotoras Genéticas , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/genética , Proteínas/metabolismo , Ratos , Ratos Sprague-Dawley , Síndrome de Células de Sertoli/genética , Síndrome de Células de Sertoli/metabolismo , Espermatogênese/efeitos dos fármacos , Espermatogênese/genética , Proteínas Supressoras de Tumor/metabolismo , Regulação para Cima/efeitos dos fármacos
11.
PLoS One ; 6(10): e26102, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22043305

RESUMO

BACKGROUND: Human N-Myc downstream regulated gene2 (NDRG2), a novel gene has been cloned and shown to be related to a number of cellular processes, including proliferation, differentiation, stress, and apoptosis. NDRG2 has also been linked to age-related Alzheimer's disease. Since the role of this gene in senescence is limited, we have investigated the potential role of NDRG2 in human lens epithelial cells (HLECs), a paradigm implicated in age-related cataract. METHODOLOGY/PRINCIPAL FINDINGS: Cultured HLECs (SRA01/04) were subjected to prolonged exposure to low dose of H(2)O(2) to simulate senescence. After being exposed to 50 µM H(2)O(2) for 2 weeks, HLECs senescent-morphological changes appeared, cell viability decreased dramatically, cell proliferation reduced from 37.4% to 16.1%, and senescence-associated ß-galactosidase activity increased from 0 to 90.3%. Ndrg2 protein expression was also significantly increased in these senescent cells. To induce overexpression of NDRG2, SRA01/04 cells were infected with the adenoviral vector of NDRG2. In these cells, overexpression of NDRG2 resulted in a fibroblast-like appearance and the cell viability decreased about 20%. In addition, the NDRG2-overexpression cells demonstrated 20% lower viability when exposed to 50-200 µM H(2)O(2) for acute oxidative stress. Furthermore, the expression of NDRG2 from age-related cataracts was up-regulated 2-fold at both mRNA and protein levels compared with the clear lenses. CONCLUSIONS/SIGNIFICANCE: NDRG2 is up regulated not only in the ageing process of HLECs in vitro but also in the cells from human age-related cortical cataract in vivo. Up-regulation of NDRG2 induces cell morphological changes, reduces cell viability, and especially lowers cellular resistance to oxidative stress. NDRG2-mediated affects in HLECs may associate with age-related cataract formation.


Assuntos
Catarata/etiologia , Senescência Celular/efeitos dos fármacos , Células Epiteliais/metabolismo , Cristalino/citologia , Proteínas Supressoras de Tumor/fisiologia , Proliferação de Células , Forma Celular , Sobrevivência Celular , Células Cultivadas , Humanos , Peróxido de Hidrogênio/farmacologia , Estresse Oxidativo , Proteínas Supressoras de Tumor/análise , Regulação para Cima
12.
Gastroenterology ; 141(6): 2076-2087.e6, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21925125

RESUMO

BACKGROUND & AIMS: Human epidermal growth factor receptor 2 (HER2) (neu/ERBB2) is overexpressed on many types of cancer cells, including gastric cancer cells; HER2 overexpression has been associated with metastasis and poor prognosis. We investigated the mechanisms by which HER2 regulates cell migration and invasion. METHODS: HER2 expression or activity was reduced in gastric cancer cell lines using small interfering RNAs or the monoclonal antibody, trastuzumab. We identified proteins that interact with HER2 or microRNAs (miRNAs) involved in HER2 signaling. We used various software programs to identify miRNAs that regulate factors in the HER2 signaling pathway. We analyzed expression patterns of these miRNAs in gastric cancer cell lines and tumor samples from patients. RESULTS: We found that CD44 binds directly to HER2, which up-regulates the expression of metastasis-associated protein-1, induces deacetylation of histone H3 lysine 9, and suppresses transcription of microRNA139 (miR-139) to inhibit expression of its target gene, C-X-C chemokine receptor type 4 (CXCR4). Knockdown of HER2 and CD44 reduced invasive activity of cultured gastric cancer cells and suppressed tumor growth in nude mice. Lymph node metastasis was associated with high levels of HER2, CD44, and CXCR4, and reduced levels of miR-139 in human metastatic gastric tumors. Cultures of different types of metastatic cancer cells with histone deacetylase inhibitors and/or DNA methyltransferase resulted in up-regulation of miR-139. CONCLUSIONS: HER2 interaction with CD44 up-regulates CXCR4 by inhibiting expression of miR-139, at the epigenetic level, in gastric cancer cells. These findings indicate how HER2 signaling might promote gastric tumor progression and metastasis.


Assuntos
Epigênese Genética/genética , Receptores de Hialuronatos/metabolismo , MicroRNAs/genética , Receptor ErbB-2/metabolismo , Receptores CXCR4/metabolismo , Neoplasias Gástricas/genética , Animais , Northern Blotting , Movimento Celular , Primers do DNA/química , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Humanos , Camundongos , Camundongos Nus , Metástase Neoplásica , Técnicas de Amplificação de Ácido Nucleico , Células Tumorais Cultivadas , Regulação para Cima
13.
Curr Eye Res ; 36(9): 838-49, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21851170

RESUMO

PURPOSE: Choroidal neovascularization (CNV) is a major cause of vision loss in patients with age-related macular degeneration (AMD). Stromal cell-derived factor-1 (SDF-1)/CXC chemokine receptor 4 (CXCR4) plays a critical role in homing of bone marrow-derived cells (BMCs) to choroidal neovascularization (CNV). In this study, we investigated the contribution of hypoxia specific HIF-1α-induced SDF-1 expression in retinal pigment epithelium (RPE) cells and the potential role of SDF-1 in CNV formation. MATERIALS AND METHODS: Green fluorescent protein (GFP) chimeric mice were developed by transplanting bone marrow cells of gfp(+/+) transgenic mice to sublethally irradiated C57BL/6J mice. CNV was induced by laser photocoagulation. Ocular tissue was processed for immunofluorescence to detect HIF-1α and SDF-1 expression, and cell surface markers such as CXCR4, CD34 and CD31 and so on during CNV formation. In vitro, adult human RPE (hRPE) cells were cultured under conditions of chemical hypoxia using CoCl2 administration. And RNAi technique was used to knock down HIF-1α gene to observe the expression of HIF-1α and SDF-1 in hRPE cells. RESULTS: BMCs trafficked around laser lesion adjacent to RPE layer 4 h after laser photocoagulation, where SDF-1 expression was relatively higher. With increasing expression of SDF-1, more BMCs were infiltrated into laser lesion to participate in CNV, and both reached peak at 3 d (p < 0.05). About 81% BMCs involved in CNV were CXCR4+. Many of them acquired the surface marker of endothelial precursor cells (CD34+) and endothelial cells (CD31+). The constituent ratio of CD34+ and CD31+ BMCs increased with SDF-1 expression. In vitro, we proved that hypoxia specific-HIF-1α influenced SDF-1 expression in hRPE cells. CONCLUSIONS: These findings suggested that hypoxia-induced SDF-1 expression in RPE might be a critical initiator for recruitment of BMCs in CNV. SDF-1 might be another important factor in BMCs' differentiation into endothelial cells to participate in the CNV.


Assuntos
Quimiocina CXCL12/genética , Neovascularização de Coroide/genética , DNA/genética , Regulação da Expressão Gênica , Macrófagos/patologia , Epitélio Pigmentado da Retina/metabolismo , Adulto , Animais , Western Blotting , Células Cultivadas , Quimiocina CXCL12/biossíntese , Neovascularização de Coroide/metabolismo , Neovascularização de Coroide/patologia , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Humanos , Lasers/efeitos adversos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase em Tempo Real , Epitélio Pigmentado da Retina/patologia
14.
Cancer Lett ; 310(1): 94-100, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21741166

RESUMO

N-myc downstream regulated gene 2 (NDRG2) is involved in invasion and metastasis of cancer, furthermore it is frequently down-regulated in prostate cancer. Herein we evaluated the effect of NDRG2 overexpression on invasiveness and bone destruction in prostate cancer. The human prostate cancer cell line PC-3 and DU145 were infected with Ad-NDRG2 or Ad-LacZ. Overexpression of NDRG2 not only inhibited the growth of the cells, but also suppressed invasiveness of the cells in an in vitro assay. PC-3 cells infected with Ad-NDRG2 or Ad-LacZ were injected into the tibias of nude mice. Four weeks later, we found the mice injected with PC-3 cells overexpressing NDRG2 had smaller tumors and less bone destruction. These results demonstrate that NDRG2 overexpression can inhibit tumor growth and invasion, furthermore, it can decrease bone destruction caused by prostate cancer bone metastasis.


Assuntos
Neoplasias Ósseas/metabolismo , Proliferação de Células , Neoplasias da Próstata/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Western Blotting , Neoplasias Ósseas/genética , Neoplasias Ósseas/secundário , Linhagem Celular Tumoral , Movimento Celular , Regulação Neoplásica da Expressão Gênica , Humanos , Interleucina-8/metabolismo , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Microscopia de Fluorescência , Invasividade Neoplásica , Transplante de Neoplasias , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Transfecção , Transplante Heterólogo , Carga Tumoral/genética , Proteínas Supressoras de Tumor/genética
15.
PLoS One ; 6(4): e18481, 2011 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-21526177

RESUMO

Choroidal neovascularization (CNV) is the common pathological basis of irreversible visual impairment encountered in a variety of chorioretinal diseases; the pathogenesis of its development is complicated and still imperfectly understood. Recent studies indicated that delta-like ligand 4 (Dll4), one of the Notch family ligands might participate in the HIF-1α-VEGF pathway to regulate CNV angiogenesis. But little is known about the influence and potential mechanism of Dll4/Notch signals on CNV angiogenesis. Real-time RT-PCR, Western blotting were used to analyze the expression alteration of Dll4, VEGF and HIF-1α in hypoxic RF/6A cells. Immunofluorescence staining, a laser-induced rat CNV model and intravitreal injection techniques were used to confirm the relationships among these molecules in vitro and in vivo. RPE-RF/6A cell co-culture systems were used to investigate the effects of Dll4/Notch signals on CNV angiogenesis. We found that the Dll4 was involved in hypoxia signaling in CNV angiogenesis. Results from the co-culture system showed that the enhancement of Dll4 expression in RF/6A cells led to the significantly faster proliferation and stronger tube forming ability, but inhibited cells migration and invasion across a monolayer of RPE cells in hypoxic environment, while siRNA-mediated Dll4 silencing caused the opposite effects. Pharmacological disruption of Notch signaling using gamma-secretase inhibitor (GSI) produced similar, but not identical effects, to that caused by the Dll4 siRNA. In addition, the expression of several key molecules involved in the angiogenesis of CNV was altered in RF/6A cells showing constitutively active Dll4 expression. These results suggest that Dll4 play an important role in CNV angiogenesis, which appears to be regulated by HIF-1α and VEGF during the progression of CNV under hypoxic conditions. Targeting Dll4/Notch signaling may facilitate further understanding of the mechanisms that underlie CNV angiogenesis.


Assuntos
Neovascularização de Coroide/metabolismo , Neovascularização de Coroide/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Proteínas de Membrana/metabolismo , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Hipóxia Celular/genética , Linhagem Celular , Movimento Celular , Proliferação de Células , Neovascularização de Coroide/genética , Técnicas de Cocultura , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Macaca mulatta , Proteínas de Membrana/genética , RNA Interferente Pequeno/metabolismo , Ratos , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Transdução de Sinais/genética , Transfecção , Regulação para Cima/genética
16.
J Exp Clin Cancer Res ; 29: 103, 2010 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-20673333

RESUMO

BACKGROUND: Recently, the anti-tumor activity of N-myc downstream-regulated gene 2 (NDRG2) was shown decreased expression in clear cell renal cell carcinoma (CCRCC), but the role of the down-expression of NDRG2 has not been described. METHODS: The NDRG2 recombinant adenovirus plasmid was constructed. The proliferation rate and NDRG2 expression of cell infected with recombinant plasmid were mesured by MTT, Flow cytometry analysis and western blot. RESULTS: The CCRCC cell A-498 re-expressed NDRG2 when infected by NDRG2 recombinant adenovirus and significantly decreased the proliferation rate. Fluorescence activated cell sorter analysis showed that 25.00% of cells expressed NDRG2 were in S-phase compared to 40.67% of control cells, whereas 62.08% of cells expressed NDRG2 were in G1-phase compared to 54.39% of control cells (P < 0.05). In addition, there were much more apoptotic cells in NDRG2-expressing cells than in the controls (P < 0.05). Moreover, upregulation of NDRG2 protein was associated with a reduction in cyclin D1, cyclin E, whereas cyclinD2, cyclinD3 and cdk2 were not affected examined by western blot. Furthermore, we found that p53 could upregulate NDRG2 expression in A-498 cell. CONCLUSIONS: We found that NDRG2 can inhibit the proliferation of the renal carcinoma cells and induce arrest at G1 phase. p53 can up-regulate the expression of NDRG2. Our results showed that NDRG2 may function as a tumor suppressor in CCRCC.


Assuntos
Apoptose/efeitos dos fármacos , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Proliferação de Células/efeitos dos fármacos , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Proteínas Supressoras de Tumor/metabolismo , Adenoviridae/genética , Western Blotting , Carcinoma de Células Renais/genética , Citometria de Fluxo , Fase G1/fisiologia , Humanos , Neoplasias Renais/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas , Proteínas Supressoras de Tumor/genética
17.
Arch Biochem Biophys ; 499(1-2): 49-55, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20460098

RESUMO

HER2 overexpression is associated with metastasis-the main cause of death in individuals with gastric cancer. In this study, we demonstrated that vector-based shRNA significantly knocked down the expression of HER2 and considerably inhibited both the migration and invasion of gastric cancer cells. HER2 knockdown resulted in the downregulation of the expression of MMP-1, while HER2 overexpression improved the transcription of MMP-1 through the activation of an MMP-1 promoter. The promoter region of MMP-1 between -2500 and -2000 bp was found to be crucial for the upregulation of HER2-mediated transcription. Furthermore, a truncated promoter (-70 to+63) did not display any transcriptional activity. Cell invasion activity was almost completely inhibited when MMP-1 was knocked down. Conversely, the overexpression of MMP-1 partly rescued the invasion ability of cell strains with knocked-down HER2. These findings help further understanding of the molecular mechanisms through which HER2 promotes malignancy, and suggest that targeting both HER2 and MMP-1 may be required to effectively block HER2 signaling in gastric cancer therapy.


Assuntos
Metaloproteinase 1 da Matriz/metabolismo , Receptor ErbB-2/metabolismo , Neoplasias Gástricas/metabolismo , Sequência de Bases , Linhagem Celular , Linhagem Celular Tumoral , Primers do DNA/genética , Técnicas de Silenciamento de Genes , Genes erbB-2 , Humanos , Metaloproteinase 1 da Matriz/genética , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Invasividade Neoplásica/genética , Invasividade Neoplásica/fisiopatologia , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas , RNA Interferente Pequeno/genética , Receptor ErbB-2/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Regulação para Cima
18.
Clin Cancer Res ; 16(8): 2284-94, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20371697

RESUMO

PURPOSE: The HER2 antigen is a recognized target on breast cancer cells for immunotherapy. To overcome the immunogenicity and systemic toxicity of traditional immunotoxins, a novel human immunoproapoptotic molecule was developed and its antitumor activity was investigated. EXPERIMENTAL DESIGN: Recombinant e23sFv-TD-tBID, consisting of a single-chain anti-HER2 antibody fragment linked to a human active truncated Bid by a 10-amino acid residue furin cleavage sequence, was bacterially expressed. Purified e23sFv-TD-tBID was tested for binding, internalization, and cytotoxic activity in cell and for tumor localization and antitumor activity in athymic nude mice bearing established human tumor xenografts. RESULTS: e23sFv-TD-tBID selectively binds to HER2-positive cells and induces apoptotic cell death in vitro and in vivo. An investigation of its mechanism of action has revealed that e23sFv-TD-tBID was internalized on binding to the surface of HER2-positive tumor cells, proteolytically cleaved and transported directly to cytosol. The antitumor activity of e23sFv-TD-tBID was shown in a dose-dependent manner when injected i.p. into immunodeficient mice bearing human breast carcinomas. Moreover, this immunoproapoptotic protein, either given as a single dose or in combination with chemotherapy agents, significantly inhibited tumor growth without any observed toxic side effects on mice. Magnetic resonance imaging further showed the specific targeting and good penetration of tumors by e23sFv-TD-tBID in vivo. The therapeutic value of e23sFv-TD-tBID to human was shown by its cytotoxic effects on primary patient-derived breast tumor cells but not on endothelial cells. CONCLUSION: These data suggest that recombinant e23sFv-TD-tBID has therapeutic potential for HER2-positive tumors and warrant further testing for clinical applications.


Assuntos
Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Furina/metabolismo , Imunotoxinas/farmacologia , Neoplasias Mamárias Experimentais/patologia , Neoplasias Mamárias Experimentais/terapia , Receptor ErbB-2/metabolismo , Proteínas Recombinantes/farmacologia , Animais , Apoptose , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/imunologia , Western Blotting , Proliferação de Células , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Humanos , Técnicas Imunoenzimáticas , Imunotoxinas/imunologia , Imageamento por Ressonância Magnética , Neoplasias Mamárias Experimentais/metabolismo , Potencial da Membrana Mitocondrial , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor ErbB-2/imunologia , Proteínas Recombinantes/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas
20.
Zhonghua Wei Chang Wai Ke Za Zhi ; 12(3): 281-4, 2009 May.
Artigo em Chinês | MEDLINE | ID: mdl-19434539

RESUMO

OBJECTIVE: To determine the expression of new candidate tumor suppressor gene N-Myc downstream-regulated gene 2(Ndrg2) in colorectal cancer with different differentiation, and analyze its clinical significance. METHODS: Specimens of 50 colorectal cancer patients with different differentiation were collected. Immunohistochemistry and Western blot were used to examine the expression of Ndrg2. Colorectal cancer tissue array in large scale was applied to analyze the expression of Ndrg2 and the statistics analysis was performed referring to the patients information of the array. RESULTS: Among 50 cases, Ndrg2 expression level of colorectal cancer was significantly lower in 32 cases as compared to adjacent and normal tissue of the same individual, while Ndrg2 expression of adjacent tissue was significantly lower than that of normal tissue. Ndrg2 protein levels increased from poor-differentiated to well-differentiated carcinomas(P=0.005). CONCLUSIONS: The expression of Ndrg2 in different differentiated colorectal cancer tissues show a significant distinction. Ndrg2 may be involved in the regulation of differentiation in colorectal cancer.


Assuntos
Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Proteínas Supressoras de Tumor/metabolismo , Adulto , Idoso , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Análise Serial de Proteínas , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA