Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 11947, 2024 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-38789486

RESUMO

A research model combining a disease and syndrome can provide new ideas for the treatment of ischemic stroke. In the field of traditional Chinese medicine, blood stasis and toxin (BST) syndrome is considered an important syndrome seen in patients with ischemic stroke (IS). However, the biological basis of IS-BST syndrome is currently not well understood. Therefore, this study aimed to explore the biological mechanism of IS-BST syndrome. This study is divided into two parts: (1) establishment of an animal model of ischemic stroke disease and an animal model of BST syndrome in ischemic stroke; (2) use of omics methods to identify differentially expressed genes and metabolites in the models. We used middle cerebral artery occlusion (MCAO) surgery to establish the disease model, and utilized carrageenan combined with active dry yeast and MCAO surgery to construct the IS-BST syndrome model. Next, we used transcriptomics and metabolomics methods to explore the differential genes and metabolites in the disease model and IS-BST syndrome model. It is found that the IS-BST syndrome model exhibited more prominent characteristics of IS disease and syndrome features. Both the disease model and the IS-BST syndrome model share some common biological processes, such as thrombus formation, inflammatory response, purine metabolism, sphingolipid metabolism, and so on. Results of the "gene-metabolite" network revealed that the IS-BST syndrome model exhibited more pronounced features of complement-coagulation cascade reactions and amino acid metabolism disorders. Additionally, the "F2 (thrombin)-NMDAR/glutamate" pathway was coupled with the formation process of the blood stasis and toxin syndrome. This study reveals the intricate mechanism of IS-BST syndrome, offering a successful model for investigating the combination of disease and syndrome.


Assuntos
Modelos Animais de Doenças , AVC Isquêmico , Medicina Tradicional Chinesa , Metabolômica , Transcriptoma , Animais , Metabolômica/métodos , AVC Isquêmico/metabolismo , AVC Isquêmico/genética , Medicina Tradicional Chinesa/métodos , Masculino , Redes Reguladoras de Genes , Ratos , Perfilação da Expressão Gênica , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/genética , Síndrome , Ratos Sprague-Dawley
2.
Mol Pain ; 20: 17448069241240692, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38443317

RESUMO

Pain is a major symptom in cancer patients, and cancer-induced bone pain (CIBP) is the most common type of moderate and severe cancer-related pain. The current available analgesic treatments for CIBP have adverse effects as well as limited therapeutic effects. Acupuncture is proved effective in pain management as a safe alternative therapy. We evaluated the analgesic effect of acupuncture in treatment of cancer pain and try to explore the underlying analgesic mechanisms. Nude mice were inoculated with cancer cells into the left distal femur to establish cancer pain model. Electroacupuncture (EA) treatment was applied for the xenograft animals. Pain behaviors of mice were evaluated, followed by the detections of neuropeptide-related and inflammation-related indicators in peripheral and central levels. EA treatment alleviated cancer-induced pain behaviors covering mechanical allodynia, thermal hyperalgesia and spontaneous pain, and also down-regulated immunofluorescence expressions of neuropeptide CGRP and p75 in the skin of affected plantar area in xenograft mice, and inhibited expressions of overexpressed neuropeptide-related and inflammation-related protein in the lumbar spinal cord of xenograft mice. Overall, our findings suggest that EA treatment ameliorated cancer-induced pain behaviors in the mouse xenograft model of cancer pain, possibly through inhibiting the expressions of neuropeptide-related and inflammation-related protein in central level following tumor cell xenografts.


Assuntos
Dor do Câncer , Eletroacupuntura , Neoplasias , Neuropeptídeos , Ratos , Humanos , Camundongos , Animais , Dor do Câncer/etiologia , Dor do Câncer/terapia , Dor do Câncer/metabolismo , Nociceptividade , Camundongos Nus , Ratos Sprague-Dawley , Dor/metabolismo , Hiperalgesia/complicações , Hiperalgesia/terapia , Hiperalgesia/induzido quimicamente , Analgésicos/metabolismo , Inflamação/metabolismo , Medula Espinal/metabolismo
3.
Biomed Pharmacother ; 172: 116260, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38382327

RESUMO

Ischemic stroke remains a major disease worldwide, and most stroke patients often suffer from serious sequelae. Endogenous neurogenesis matters in the repair and regeneration of impaired neural cells after stroke. We have previously reported in vivo that PNS could strengthen the proliferation and differentiation of neural stem cells (NSCs), modulate synaptic plasticity and protect against ischemic brain injuries in cerebral ischemia rats, which could be attributed to mTOR signaling activation. Next, to obtain further insights into the function mechanism of PNS, we evaluated the direct influence of PNS on the survival, differentiation and synaptic development of C17.2 NSCs in vitro. The oxygen glucose deprivation/reperfusion (OGD/R) model was established to mimic ischemic brain injuries. We found that after OGD/R injuries, PNS improved the survival of C17.2 cells. Moreover, PNS enhanced the differentiation of C17.2 cells into neurons and astrocytes, and further promoted synaptic plasticity by significantly increasing the expressions of synapse-related proteins BDNF, SYP and PSD95. Meanwhile, PNS markedly activated the Akt/mTOR/p70S6K pathway. Notably, the mTOR inhibitor rapamycin pretreatment could reverse these desirable results. In conclusion, PNS possessed neural differentiation-inducing properties in mouse C17.2 NSCs after OGD/R injuries, and Akt/mTOR/p70S6K signaling pathway was proved to be involved in the differentiation and synaptic development of C17.2 cells induced by PNS treatment under the in vitro ischemic condition. Our findings offer new insights into the mechanisms that PNS regulate neural plasticity and repair triggered by NSCs, and highlight the potential of mTOR signaling as a therapeutic target for neural restoration after ischemic stroke.


Assuntos
Lesões Encefálicas , AVC Isquêmico , Células-Tronco Neurais , Panax notoginseng , Traumatismo por Reperfusão , Acidente Vascular Cerebral , Humanos , Animais , Camundongos , Ratos , Proteínas Quinases S6 Ribossômicas 70-kDa , Neuritos , Proteínas Proto-Oncogênicas c-akt , Neurogênese , Serina-Treonina Quinases TOR , Traumatismo por Reperfusão/tratamento farmacológico , Transdução de Sinais
4.
J Ethnopharmacol ; 249: 112385, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31730888

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Cerebral ischemia, also known as stroke, can stimulate the proliferation and migration of endogenous neural stem cells (NSCS) in subventricular zone of the lateral ventricle and subgranularzone of the dentate gyrus in the adult hippocampus as a defense response to damage. However, the proliferation of endogenous NSCS is insufficient for central nervous system repair. Neurogenesis and anti-neuroinflammation are two important aspects for neuroprotection. Rhizome Ligusticum chuanxiong (LC), the dried rhizomes of Ligusticum striatum DC., has been widely used to treat stroke for over hundreds of years in Traditional Chinese Medicine. PURPOSE: of the study: Previous reports on pharmacological mechanism of LC mainly focus on the cerebral blood flow and thrombolysis. We aim to explore whether LC provides neuroprotective effect by increasing neurogenesis and inhibiting the IL-1ß, TNF-α and expressions of glial fibrillary acidic protein. MATERIALS AND METHODS: LC extract was delivered to microsphere-embolized (ME) cerebral ischemia Wister rats to examine its neuroprotection. Body weight, neurological scores, hematoxylin-eosin staining (HE), TUNEL assay were conducted for neurological damage. Neurogenesis was evaluated by assessing the expression of Doublecortin (DCX) and neurogenic differentiation1 (NeuroD1) through immunofluorescence staining. Western blot performed to measure the protein levels of growth associated protein-43(GAP-43), glial fibrillary acidic protein (GFAP). IL-1ß and TNF-α was detected by Elisa. RESULTS: LC alleviated pathomorphological change and apoptosis of neurons in the hippocampus caused by ME surgery. Furthermore, LC significantly increased the DCX in the DG of adult rat hippocampus at 14 days after surgery. A significant upregulation of GAP-43 compared to the ME after LC was administered. Besides, LC decreased pro-inflammatory cytokine (IL-1ß, TNF-α) and protein level of GFAP. CONCLUSION: The finding suggested that LC had the ability to protect neurons by promoting the endogenous proliferation of neuroblast and production of neural differentiation factor in rats after ischemia injury. Meanwhile, LC can anti-neuroinflammation, which is important for the treatment of neuron injury. Accordingly, LC perhaps a promising medicine for neuron damage therapy after cerebral ischemia.


Assuntos
Isquemia Encefálica/prevenção & controle , Ligusticum/química , Fármacos Neuroprotetores/farmacologia , Acidente Vascular Cerebral/prevenção & controle , Animais , Apoptose/efeitos dos fármacos , Modelos Animais de Doenças , Proteína Duplacortina , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Inflamação/prevenção & controle , Masculino , Microesferas , Células-Tronco Neurais/metabolismo , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/patologia , Ratos , Ratos Wistar
5.
Oxid Med Cell Longev ; 2019: 8416105, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31565154

RESUMO

BACKGROUND: Astrogliosis can result in astrocytes with hypertrophic morphology after injury, indicated by extended processes and swollen cell bodies. Lipocalin-2 (LCN2), a secreted glycoprotein belonging to the lipocalin superfamily, has been reported to play a detrimental role in ischaemic brains and neurodegenerative diseases. Sailuotong (SLT) capsule is a standardized three-herb preparation composed of ginseng, ginkgo, and saffron for the treatment of vascular dementia. Although recent clinical trials have demonstrated the beneficial effect of SLT on vascular dementia, its potential cellular mechanism has not been fully explored. METHODS: Male adult Sprague-Dawley (SD) rats were subjected to microsphere-embolized cerebral ischaemia. Immunostaining and Western blotting were performed to assess astrocytic reaction. Human astrocytes exposed to oxygen-glucose deprivation (OGD) were used to elucidate the effects of SLT-induced inflammation and astrocytic reaction. RESULTS: A memory recovery effect was found to be associated with the cerebral ischaemia-induced expression of inflammatory proteins and the suppression of LCN2 expression in the brain. Additionally, SLT reduced the astrocytic reaction, LCN2 expression, and the phosphorylation of STAT3 and JAK2. For in vitro experiments, OGD-induced expression of inflammation and LCN2 was also decreased in human astrocyte by the SLT treatment. Moreover, LCN2 overexpression significantly enhanced the above effects. SLT downregulated these effects that were enhanced by LCN2 overexpression. CONCLUSIONS: SLT mediates neuroinflammation, thereby protecting against ischaemic brain injury by inhibiting astrogliosis and suppressing neuroinflammation via the LCN2-JAK2/STAT3 pathway, providing a new idea for the treatment strategy of ischaemic stroke.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Demência Vascular/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Inflamação/tratamento farmacológico , Lipocalina-2/antagonistas & inibidores , Lipocalina-2/metabolismo , Memória/efeitos dos fármacos , Animais , Medicamentos de Ervas Chinesas/farmacologia , Humanos , Masculino , Ratos , Ratos Sprague-Dawley , Transfecção
6.
BMC Complement Altern Med ; 19(1): 216, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31412862

RESUMO

BACKGROUND: Breast cancer is still the most common malignant tumor that threatens the female's life in the world, especially triple-negative breast cancer (TNBC), one of the most difficult subtypes. Lack of targeted therapies brings about urgent demand for novel treatments. In this study we aim to investigate the anti-tumor activity of Berberine (BBR), a Chinese plant-derived alkaloid, against the TNBC cell line MDA-MB-231 and elucidate its mechanism referring to anti-inflammation. METHODS: Cell inhibition rate was measured by Cell Proliferation Assay, the cytotoxic effects was detected by Lactate dehydrogenase (LDH) leakage assay, the colony formation and migration potential were evaluated by colony formation assay and wound healing assay, the release of inflammatory cytokines was detected by EMD multifactor detection, and alterations of proteins and genes related to the NLR family pyrin domain containing 3 (NLRP3) inflammasome pathway were analyzed using western blotting and real-time Polymerase Chain Reaction (PCR). RESULTS: BBR reduce the viability of MDA-MB-231 cells and increased the release of LDH from the cells in a dose-dependent manner, with and inhibition of colony formation potential and migration of the cells. BBR also caused a marked reduction in the secretion of proinflammatory cytokines, Interleukin-1α (IL-1α), Interleukin-1ß (IL-1ß), Interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α). Besides, a down-regulated behavior was observed with the expression of P2X purinoceptor 7 (P2X7), NLRP3, pro-caspase-1, apoptosis-associated speck-like protein containing a caspase-activation and recruitment domain (ASC), caspase-1 p20, Interleukin-18 (IL-18), IL-1ß proteins and NLRP3, Caspase-1 and ASC mRNAs in the NLRP3 inflammasome cascade. CONCLUSIONS: Our results confirmed that BBR can effectively affect both tumor outgrowth and spontaneous metastasis in TNBC, and that we identified a new mechanism associated with inhibition the NLRP3 inflammasome pathway, suggesting its potential therapeutic relevance in clinical use.


Assuntos
Berberina/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Inflamassomos/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Neoplasias de Mama Triplo Negativas/imunologia , Apoptose/efeitos dos fármacos , Caspase 1/genética , Caspase 1/imunologia , Feminino , Humanos , Inflamassomos/genética , Inflamassomos/imunologia , Interleucina-18/genética , Interleucina-18/imunologia , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/fisiopatologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
7.
Cancer Cell Int ; 18: 113, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30123091

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) is one of the most difficult subtypes of breast cancer to treat due to its aggressive, metastatic behavior, and a lack of a targeted therapy. Trivalent arsenic derivatives (arsenite, AsIII) with remarkable clinical efficacy in acute promyelocytic leukemia has been demonstrated to exhibit inhibitory effect against breast cancer cells. To provide novel insight into the development of new therapeutic strategies, antitumor activity of AsIII and tetrandrine (Tetra), a Chinese plant-derived alkaloid, against the TNBC cell line MDA-MB-231 in vitro and in vivo was investigated. METHODS: Cytotoxicity was evaluated using cell viability, lactate dehydrogenase leakage and cell cycle assay. Alterations of genes related to cell proliferation and death were analyzed using western blotting. In vivo antitumor activity of AsIII alone or in combination with Tetra was studied using MDA-MB-231 xenografts in nude mice. RESULTS: Synergistic cytotoxic effects of two drugs were observed in the cells. In vivo study also showed that co-administration of AsIII and Tetra significantly reduced tumor volume and weight, directly supporting its in vitro antitumor activity. No deaths and reduction of body-weight were observed after a long-term co-administration, indicating its good tolerability. S-phase arrest associated with the upregulation of FOXO3a, p27 along with decreased Cyclin D1 expression was observed in the cells treated with the combined regimen. A substantial upregulated p21 expression and downregulated phospho-FOXO3a and Cyclin D1 expression was observed in the tumor tissues of mice co-administered with AsIII and Tetra. Autophagy induction was observed in the combination treatment in vitro and in vivo. The addition of wortmannin, a potent autophagy inhibitor, significantly rescued MDA-MB-231 cells from their cytotoxicity of AsIII and Tetra. CONCLUSIONS: S-phase arrest, autophagic and necrotic cell death contribute to the cytocidal effects of the combined regimen of AsIII and Tetra. Considering our previous study showing synergistic cytotoxic effects of the combined regimen in estrogen receptor-positive breast cancer cell line MCF-7, these results suggest that development of the combination regimen of AsIII plus Tetra may offer many benefits to patients with different types of breast cancer.

8.
Front Pharmacol ; 9: 518, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29867513

RESUMO

Background: Astrogliosis has the potential to lead to harmful effects, namely, neuroinflammation, and to interfere with synapse sprouting. Previous studies have suggested that Lipocalin-2 (LCN2) acts as a key target in regulating the reaction of astrocytes. However, the underlying molecular mechanism is not fully elucidated. In the present study, we examined the neuroprotective and anti-inflammatory effects of Ginkgo biloba extract (EGB), a well-known extract with potential immunoregulatory properties in the nervous system. Methods: Triphenyltetrazolium chloride staining, hematoxylin-eosin staining, electron microscopy, and neurological assessments were performed in a microsphere-embolized rat model. Human astrocytes exposed to oxygen glucose deprivation (OGD) were used for in vitro experiments. Inflammatory cytokines, multi-labeling immunofluorescence, and Western blotting were used to investigate the molecular mechanisms underlying the EGB-mediated anti-inflammatory effects in vivo and in vitro. Results: EGB markedly attenuated cerebral infarction and neuronal apoptosis, reduced the inflammatory cytokine level, and alleviated neurological deficiencies in cerebral ischemic rats. After surgery, EGB significantly inhibited astrocyte activation, reduced the phosphorylation of STAT3 and JAK2 and decreased LCN2 expression. In vitro, EGB blocked OGD-induced STAT3 activation and the generation of pro-inflammatory cytokines in human astrocytes, and these effects were significantly enhanced by LCN2 overexpression. EGB downregulated these effects enhanced by LCN2 overexpression. Conclusion: EGB is demonstrated to mediate neuroinflammation, which protects against ischemic brain injury by inhibiting astrogliosis and suppresses neuroinflammation via the LCN2-JAK2/STAT3 pathway, providing insight into a promising therapeutic strategy for ischemic stroke.

9.
Cell Physiol Biochem ; 47(2): 604-616, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29794436

RESUMO

BACKGROUND/AIMS: Ischemic stroke is a leading cause of long-term disability. To date, there is no effective treatment for stroke. Previous studies have shown that Ginkgo biloba extract has protective effects against neurodegenerative disorders. In this present study, we sought to test the potential protective role of an active component of Ginkgo biloba extract, bilobalide, in a rat model of middle cerebral artery occlusion (MCAO). METHODS: A rat model of MCAO was used to test the potential protective effects of Bilobalide B on stroke protection. TTC staining was performed to evaluate infarct size of the brains. Neurological deficit score was measured to reveal the effects of the treatments on animal behavior and cognition. Immunohistochemical staining and transmission electronic microscope analysis were performed to measure the cellular responses to drug treatment. Western blotting and ELISA were performed. The expression of Cleaved- Casepase 3, Beclin-1, p62 and LC3I/II were quantified, and the Phosphorylation of eNOS and Akt were evaluated. The ratio of Bcl-2/ Bax was determined to reveal the molecular pathways that are involved in the drug treatment. RESULTS: We found that intraperitoneal delivery of various Bilobalide doses during ischemia can protect against brain injury, as evidenced by reduced infarct size and improved neurological scores after surgery. Histochemical analysis revealed that treatment with bilobalide can significantly reduce apoptosis, autophagy, and promote angiogeneis following ischemia/reperfusion injury to the brain. The performence of increased phosphorylation of eNOS and Akt suggested that bilobalide can activate Akt prosurvival and eNOS pathways to promote cell survival and angiogenesis, respectively. CONCLUSIONS: Our results suggested that bilobalide benefits stroke symptoms by reducing cell death pathways and promoting angiogenesis. As such, bilobalide may be a potential agent for improving self-repair after ischemic stroke.


Assuntos
Autofagia/efeitos dos fármacos , Ciclopentanos/farmacologia , Furanos/farmacologia , Ginkgolídeos/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Óxido Nítrico Sintase Tipo III/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Traumatismo por Reperfusão/patologia , Animais , Apoptose/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Caspase 3/metabolismo , Ciclopentanos/uso terapêutico , Modelos Animais de Doenças , Furanos/uso terapêutico , Ginkgolídeos/uso terapêutico , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/prevenção & controle , Masculino , Proteínas Associadas aos Microtúbulos/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Óxido Nítrico/metabolismo , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
10.
Zhongguo Zhong Yao Za Zhi ; 43(4): 786-793, 2018 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-29600656

RESUMO

This study aimed to observe the general state and changes in pathophysiological indexes of multiple cerebral infarction rat model with Qi-deficienty and Blood-stasis syndrome. Rats were randomly divided into 4 groups(with 30 in each group): the normal group, the sham group, the model group and the Yiqi Huoxue recipe group. Rats in the model group and Yiqi Huoxue group were provided with interruptable sleep deprivation for 7 days before the multiple cerebral infarction operation, and followed by another 4 weeks of sleep deprivation; rats in the Yiqi Huoxue group were intragastrically administrated with drug at a dose of 26 g·kg⁻¹, once a day for 4 weeks. The general state was observed, and the pathophysiological indexes were measured at 48 h, 2 weeks and 4 weeks after administration. The results showed that rats in the normal group and the sham group represented a good general state and behaviors, with a normal morphological structure of brain tissues; rats in the model group featured yellow fur, depression, accidie, loose stools and movement disorder, with obvious brain histomorphological damage, which became aggravated with the increase of modeling time; rats in the Yiqi Huoxue group showed release in the general state and above indexes. Compared with the sham group at three time points, rats in the model group showed decrease in body weight, exhaustive swimming time and RGB value of tongue surface image, and increase in whole blood viscosity of the shear rate under 5, 60 and 150 S⁻¹, reduction in cerebral cortex Na⁺-K⁺-ATPase, Ca²âº-ATPase activity and contents of 5-HT, rise in TXB2 levels and decline in 6-keto-PGF1a in serum(P<0.05, P<0.01). Compared with the model group, rats in the Yiqi Huoxue group showed alleviations in the above indexes at 2 w and 4 w(P<0.05, P<0.01). The results showed that the characterization and pathophysiological indexes in the multiple cerebral infarction rat model with Qi-deficiency and blood-stasis syndrome were deteriorated; Yiqi Huoxue recipe could significantly alliviate the abnormal conditions, which suggested of the model was stable and reliable and the pathophysiologic evolutionary mechanism might be related to energy metabolism dysfunction, vasoactive substance abnormality and changes in neurotransmitters.


Assuntos
Infarto Cerebral/fisiopatologia , Medicamentos de Ervas Chinesas/farmacologia , Metabolismo Energético , Animais , ATPases Transportadoras de Cálcio/metabolismo , Medicina Tradicional Chinesa , Qi , Ratos , ATPase Trocadora de Sódio-Potássio/metabolismo
11.
Int J Oncol ; 51(2): 587-598, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28656245

RESUMO

To provide novel insight into the development of new therapeutic strategies to combat breast cancer using trivalent arsenic (AsIII)-based combination therapy, the cytotoxicity of a combination of AsIII and tetrandrine (Tetra), a Chinese plant-derived alkaloid, was investigated in the human breast cancer cell line MCF-7. Cytotoxicity was evaluated using cell viability, colony formation, wound healing, lactate dehydrogenase leakage and cell cycle assay. Alterations of genes associated with cell proliferation and death were analyzed using real-time PCR and western blotting. Intracellular arsenic accumulation (As[i]) was also determined. Tetra significantly enhanced the cytotoxicity of AsIII in MCF-7 cells in a synergistic manner. The combined treatment upregulated the expression level of FOXO3a, and subsequently resulted in a concomitant increase in the expression levels of p21, p27, and decrease of cycline D1, which occurred in parallel with G0/G1 phase arrest. Autophagy induction was also observed in the combination treatment. Importantly, combining AsIII with Tetra exhibited a synergistic inhibitory effect on the expression level of survivin. Furthermore, enhanced As[i] along with synergistic cytotoxicity was observed in MCF-7 cells treated with AsIII combined with Tetra or Ko134, an inhibitor of breast cancer resistance protein (BCRP), suggesting that Tetra or the BCRP inhibitor probably intervened in the occurrence of resistance to arsenic therapy by enhancing the As[i] via modulation of multidrug efflux transporters. These results may provide a rational molecular basis for the combination regimen of AsIII plus Tetra, facilitating the development of AsIII-based anticancer strategies and combination therapies for patients with solid tumors, especially breast cancer.


Assuntos
Arsenitos/administração & dosagem , Benzilisoquinolinas/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Sinergismo Farmacológico , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Feminino , Pontos de Checagem da Fase G1 do Ciclo Celular , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Proteínas de Neoplasias/antagonistas & inibidores
12.
Zhongguo Zhong Yao Za Zhi ; 39(5): 891-5, 2014 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-25204185

RESUMO

OBJECTIVE: To observe the effect of Huatuo Zaizao extractum (HTZZ) on focal cerebral ischemia/reperfusion (I/R) neurogenesis in rats induced by middle cerebral artery occlusion (MCAO) and its mechanism. METHOD: Totally 55 healthy adult male Sprague-Dawley rats were divided into the sham operation group, the MCAO model group and HTZZ high, middle and low dose groups (5, 2.5, 1.25 g x kg(-1)), with 11 rats in each group, and orally administered with drugs. The focal cerebral ischemia model was established by performing a middle cerebral artery occlusion (MCAO, 90 min) followed by a seven-day reperfusion (once a day). The neurogenesis and expressions of extracellular signal-regulated kinase (ERK) and cAMP response element binding protein (CREB) were detected by the immunofluorescent staining. The enzyme linked immunosorbent assay (ELISA) was adopted to determine the vascular endothelial growth factor (VEGF) and brain-derived neurotrophic factor (BDNF). RESULT: MCAO (90 min) followed by a seven-day reperfusion resulted in the significant increase in the number of penumbra cortex newborn neurons (BrdU(+) -NeuN(+)), which was accompanied by the growth of ERK and CREB phosphorylation and VEGF and BDNF levels. HTZZ could promote the generation of newborn neurons (BrdU(+)-NeuN(+)) and the ERK and CREB phosphorylation and increase VEGF and BDNF levels at the ischemic side. CONCLUSION: HTZZ could promote the neurogenesis, which may be the interventional targets of effective traditional Chinese medicine Huatuo Zaizao extractum in promoting the self-repair function of the cerebral ischemic areas.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Medicamentos de Ervas Chinesas/administração & dosagem , Neurônios/citologia , Animais , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Isquemia Encefálica/fisiopatologia , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Humanos , Masculino , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Reperfusão , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
13.
J Pharmacol Sci ; 124(3): 354-64, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24646622

RESUMO

Melatonin, a natural product of the pineal gland, has been shown to protect against ischemic stroke, but the molecular mechanisms underlying its protective function are not fully understood. In the present study, we tested whether melatonin could protect against ischemia-reperfusion (I/R) injury to rat brain by targeting the autophagy pathway. The I/R brain injury was induced by the established rat transient middle cerebral artery occlusion model. We found intraperitoneal injection of melatonin can ameliorate rat brain injury as evidenced by multiple morphological and behavioral criteria, such as infarct size, neurological score, serum creatine kinase, and lactate dehydrogenase content, as well as pyknotic-positive cells. Further studies revealed that the beneficial effects of melatonin is through targeting the autophagy pathway by inhibiting expression of beclin-1 and conversion of LC3, as well as activating the PI3K/Akt pro-survival pathway. To further confirm this finding, the autophagy pathway was activated by lentiviral mediated beclin-1 delivery and the PI3K/Akt pathway was inhibited by a pharmacological inhibitor, LY294002. In both manipulations, the beneficial effects of melatonin were greatly abolished. Taken together, our study suggested melatonin plays a protective role against I/R brain injury by inhibiting autophagy and activating the PI3K/Akt pro-survival pathway.


Assuntos
Autofagia/efeitos dos fármacos , Ataque Isquêmico Transitório/tratamento farmacológico , Ataque Isquêmico Transitório/prevenção & controle , Melatonina/administração & dosagem , Melatonina/farmacologia , Fármacos Neuroprotetores , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Autofagia/fisiologia , Proteína Beclina-1 , Modelos Animais de Doenças , Expressão Gênica/efeitos dos fármacos , Injeções Intraperitoneais , Ataque Isquêmico Transitório/genética , Masculino , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
14.
Zhongguo Zhong Yao Za Zhi ; 34(20): 2622-6, 2009 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-20069907

RESUMO

OBJECTIVE: To observe the intervention effects of Huannao Yicong decoction on cognitive function and apoptosis and expression of relative regulative gene of Hippocampus in cognitive impairment rats induced by complex factors. METHOD: 60 SD rats were divided randomly into Huannao Yicong decoction high-dose group (HHG), Huannao Yicong decoction low-dose group (HLG), positive control group (PCG), model control group (MCG) and blank control group (BCG). Rats in the BCG were received daily hypodermic injection of tales doses of normal sodium for 10 weeks with normal feeder. Rats in other groups were received daily hypodermic injection of D-galactose with the concentration of 50 mg kg(-1) for 10 weeks, from the 5th week on, half fat feeder were fed until the end of the 10th week. From the 7th on, rats in HHG were administered with 0.01 mL g(-1) Huannao Yicong decoction suspension by gavage (crude drug 14 g kg(-1)). Rats in LHG were administered with 0.01 mL g(-1) Huannao Yicong decoction suspension by gavage (crude drug 7 g kg(-1)). Rats in PCG were administered with 0.01 mL g(-1) hydrochloricdonepezil suspension by gavage (0.4 mg kg(-1)). Rats in MCG and BCG were administered with 0.01 mL g(-1) distilled water by gavage, intragastric administration was given daily until the end of the 10th week. The behaviors of the rats were observed by morris water maze, the apoptosis and expression of relative regulative gene of hippocampus were measured. RESULT: The morris water maze indicated that compared with the BCG, the platform locating latency of rats in the MCG was longer and the frequency of swimming through the platform was fewer(P <0.05, P < 0.01), compared with the MCG, there was significant difference on the frequency of swimming through the platform in the HHG and PCG (P <0.05, P <0.01). The number of apoptosis cells in the MCG was more than that in the BCG, the difference was significant (P <0.01), the number of apoptosis cells in the HHG, HLG and PCG was reduced and the ratio of Bcl-2 and Bax was increased (P < 0.01). CONCLUSION: Huannao Yicong decoction could improve the learning and memory functions of cognitive impairment rats, inhibit the apoptosis of cells in hippocampus, regulate the expression of relative gene, accelerate the repairing of cells, protect the impaired brain tissue, and these may be part of the channels of clinical effects.


Assuntos
Transtornos Cognitivos/tratamento farmacológico , Medicamentos de Ervas Chinesas/administração & dosagem , Expressão Gênica/efeitos dos fármacos , Hipocampo/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteína X Associada a bcl-2/genética , Animais , Apoptose/efeitos dos fármacos , Transtornos Cognitivos/genética , Transtornos Cognitivos/metabolismo , Modelos Animais de Doenças , Feminino , Hipocampo/efeitos dos fármacos , Humanos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Proteína X Associada a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA