Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Mol Biol Lett ; 28(1): 77, 2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37805473

RESUMO

BACKGROUND: Hepatic fibrosis is a common consequence of chronic liver diseases without approved antifibrotic therapies. Long noncoding RNAs (lncRNAs) play an important role in various pathophysiological processes. However, the functions of certain lncRNAs involved in mediating the antifibrotic role remain largely unclear. METHODS: The RNA level of lnc-High Expressed in Liver Fibrosis (Helf) was detected in both mouse and human fibrotic livers. Furthermore, lnc-Helf-silenced mice were treated with carbon tetrachloride (CCl4) or bile duct ligation (BDL) to investigate the function of lnc-Helf in liver fibrosis. RESULTS: We found that lnc-Helf has significantly higher expression in human and mouse fibrotic livers as well as M1 polarized hepatic macrophages (HMs) and activated hepatic stellate cells (HSCs). In vivo studies showed that silencing lnc-Helf by AAV8 vector alleviates CCl4- and BDL-induced hepatic inflammation and fibrosis. Furthermore, in vitro experiments revealed that lnc-Helf promotes HSCs activation and proliferation, as well as HMs M1 polarization and proliferation in the absence or presence of cytokine stimulation. Mechanistically, our data illustrated that lnc-Helf interacts with RNA binding protein PTBP1 to promote its interaction with PIK3R5 mRNA, resulting in increased stability and activating the AKT pathway, thus promoting HSCs and HMs activation and proliferation, which augments hepatic inflammation and fibrosis. CONCLUSION: Our results unveil a lnc-Helf/PTBP1/PIK3R5/AKT feedforward, amplifying signaling that exacerbates the process of hepatic inflammation and fibrosis, thus providing a possible therapeutic strategy for hepatic fibrosis.


Assuntos
Fosfatidilinositol 3-Quinase , RNA Longo não Codificante , Animais , Humanos , Camundongos , Células Cultivadas , Ribonucleoproteínas Nucleares Heterogêneas/genética , Inflamação , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , Fatores de Transcrição/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo
2.
Med Oncol ; 39(10): 156, 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35852638

RESUMO

To reveal whether STARD5 is a potential biomarker for diagnosis and prognosis of HCC. Using gene expression omnibus and the cancer genome atlas (TCGA) to screen differentially expressed genes in HCC and STARD5 was selected by LASSO algorithm. Then, we analyzed the association between STARD5 and clinical characteristics of HCC patients in TCGA and International Cancer Genome Consortium. Meanwhile, the mRNA and protein level of STARD5 was also verified by collecting 87 cases of HCC patients' liver tissues using qRT-PCR and WB. Next, we applied gene set enrichment analysis (GSEA) for pathways analysis of STARD5. Finally, TIMER1.0 and TISIDB were used to explore the correlation of STARD5 with immune cell infiltration. The expression of STARD5 was lower in HCC and negatively correlated with tumor grade (p < 0.05), while high expression of STARD5 suggested a better prognosis for HCC patients (p < 0.01) and it could be an independent prognostic predictor (p < 0.001). Meanwhile, STARD5 also had strong diagnostic accuracy for HCC patients. GSEA revealed that STARD5-related genes were mainly enriched in E2F targets, G2M checkpoint and KRAS signaling. The TIMER1.0 and TISIDB databases found a negative correlation between STARD5 and tumor immune infiltrating cells. STARD5 could be used as a potential target for HCC diagnosis and prognosis.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/patologia , Humanos , Neoplasias Hepáticas/patologia , Prognóstico , RNA Mensageiro/genética
3.
FEBS J ; 284(7): 1096-1109, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28296235

RESUMO

The aberrant accumulation of ß-amyloid peptide (Aß) in the brain is a key feature of Alzheimer's disease (AD), and enhanced cleavage of ß-amyloid precursor protein (APP) by ß-site APP-cleaving enzyme 1 (BACE1) has a major causative role in AD. Despite their prominence in AD pathogenesis, the regulation of BACE1 and APP is incompletely understood. In this study, we report that the circular RNA circular RNA sponge for miR-7 (ciRS-7) has an important role in regulating BACE1 and APP protein levels. Previous studies have shown that ciRS-7, which is highly expressed in the human brain, is down-regulated in the brain of people with AD but the relevance of this finding was not clear. We have found that ciRS-7 is not involved in the regulation of APP and BACE1 gene expression, but instead reduces the protein levels of APP and BACE1 by promoting their degradation via the proteasome and lysosome. Consequently, overexpression of ciRS-7 reduces the generation of Aß, indicating a potential neuroprotective role of ciRS-7. Our data also suggest that ciRS-7 modulates APP and BACE1 levels in a nuclear factor-κB (NF-κB)-dependent manner: ciRS-7 expression inhibits translation of NF-κB and induces its cytoplasmic localization, thus derepressing expression of UCHL1, which promotes APP and BACE1 degradation. Additionally, we demonstrated that APP reduces the level of ciRS-7, revealing a mutual regulation of ciRS-7 and APP. Taken together, our data provide a molecular mechanism implicating reduced ciRS-7 expression in AD, suggesting that ciRS-7 may represent a useful target in the development of therapeutic strategies for AD.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Neurônios/metabolismo , RNA/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Precursor de Proteína beta-Amiloide/genética , Ácido Aspártico Endopeptidases/genética , Linhagem Celular Tumoral , Regulação da Expressão Gênica , Genes Reporter , Células HEK293 , Humanos , Luciferases/genética , Luciferases/metabolismo , Lisossomos/metabolismo , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , NF-kappa B/genética , Neurônios/citologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Biossíntese de Proteínas , Proteólise , RNA/genética , RNA Circular , Transdução de Sinais , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo
4.
Oncotarget ; 7(36): 58315-58330, 2016 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-27506947

RESUMO

Colorectal cancer (CRC) is one of the most common cancers leading to high mortality. However, long-term administration of anti-tumor therapy for CRC is not feasible due to the side effects. Omega-3 polyunsaturated fatty acids (ω-3 PUFAs), particularly DHA and EPA, exert protection against CRC, but the mechanisms are unclear. Here, we show that ω-3 PUFAs inhibit proliferation and induce apoptosis of CRC cells in vitro and alleviate AOM/DSS-induced mice colorectal cancer in vivo. Moreover, ω-3 PUFAs promote phosphorylation and cytoplasmic retention of YAP and this effect was mediated by MST1/2 and LATS1, suggesting that the canonical Hippo Pathway is involved in ω-3 PUFAs function. We further confirmed that increase of pYAP by ω-3 PUFAs was mediated by GPRs, including GPR40 and GPR120, which subsequently activate PKA via Gαs, thus inducing the Hippo pathway activation. These data provide a novel DHA/EPA-GPR40/120-Gαs-PKA-MST1/2-LATS1-YAP signaling pathway which is linked to ω-3 PUFAs-induced inhibition of cell proliferation and promotion of apoptosis in CRC cells, indicating a mechanism that could explain the anti-cancer action of ω-3 PUFAs.


Assuntos
Neoplasias Colorretais/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Antineoplásicos/farmacologia , Apoptose , Azoximetano/química , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/terapia , Citoplasma/metabolismo , Sulfato de Dextrana/química , Células HT29 , Via de Sinalização Hippo , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Fosfoproteínas/metabolismo , Fosforilação , Transporte Proteico , Proteínas de Sinalização YAP
5.
Sci Rep ; 6: 30029, 2016 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-27435808

RESUMO

Elevated levels of the transcriptional regulators Yes-associated protein (YAP) and transcriptional coactivators with PDZ-binding motif (TAZ), key effectors of the Hippo pathway, have been shown to play essential roles in controlling liver cell fate and the activation of hepatic stellate cells (HSCs). The dietary intake of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) has been positively associated with a number of health benefits including prevention and reduction of cardiovascular diseases, inflammation and cancers. However, little is known about the impact of ω-3 PUFAs on liver fibrosis. In this study, we used CCl4-induced liver fibrosis mouse model and found that YAP/TAZ is over-expressed in the fibrotic liver and activated HSCs. Fish oil administration to the model mouse attenuates CCl4-induced liver fibrosis. Further study revealed that ω-3 PUFAs down-regulate the expression of pro-fibrogenic genes in activated HSCs and fibrotic liver, and the down-regulation is mediated via YAP, thus identifying YAP as a target of ω-3 PUFAs. Moreover, ω-3 PUFAs promote YAP/TAZ degradation in a proteasome-dependent manner. Our data have identified a mechanism of ω-3 PUFAs in ameliorating liver fibrosis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Ácidos Graxos Ômega-3/administração & dosagem , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/fisiologia , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/patologia , Fosfoproteínas/metabolismo , Fatores de Transcrição/metabolismo , Aciltransferases , Animais , Proteínas de Ciclo Celular , Modelos Animais de Doenças , Regulação para Baixo , Fígado/patologia , Masculino , Camundongos Endogâmicos BALB C , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Resultado do Tratamento , Proteínas de Sinalização YAP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA