Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biol Proced Online ; 26(1): 28, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39266953

RESUMO

BACKGROUND: Breast cancer poses a significant health risk to women worldwide, with approximately 30% being diagnosed annually in the United States. The identification of cancerous mammary tissues from non-cancerous ones during surgery is crucial for the complete removal of tumors. RESULTS: Our study innovatively utilized machine learning techniques (Random Forest (RF), Support Vector Machine (SVM), and Convolutional Neural Network (CNN)) alongside Raman spectroscopy to streamline and hasten the differentiation of normal and late-stage cancerous mammary tissues in mice. The classification accuracy rates achieved by these models were 94.47% for RF, 96.76% for SVM, and 97.58% for CNN, respectively. To our best knowledge, this study was the first effort in comparing the effectiveness of these three machine-learning techniques in classifying breast cancer tissues based on their Raman spectra. Moreover, we innovatively identified specific spectral peaks that contribute to the molecular characteristics of the murine cancerous and non-cancerous tissues. CONCLUSIONS: Consequently, our integrated approach of machine learning and Raman spectroscopy presents a non-invasive, swift diagnostic tool for breast cancer, offering promising applications in intraoperative settings.

2.
Comput Methods Programs Biomed ; 245: 108019, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38237450

RESUMO

BACKGROUND AND OBJECTIVE: Pancreatic Ductal Adenocarcinoma (PDAC) is a form of pancreatic cancer that is one of the primary causes of cancer-related deaths globally, with less than 10 % of the five years survival rate. The prognosis of pancreatic cancer has remained poor in the last four decades, mainly due to the lack of early diagnostic mechanisms. This study proposes a novel method for detecting PDAC using explainable and supervised machine learning from Raman spectroscopic signals. METHODS: An insightful feature set consisting of statistical, peak, and extended empirical mode decomposition features is selected using the support vector machine recursive feature elimination method integrated with a correlation bias reduction. Explicable features successfully identified mutations in Kirsten rat sarcoma viral oncogene homolog (KRAS) and tumor suppressor protein53 (TP53) in the fingerprint region for the first time in the literature. PDAC and normal pancreas are classified using K-nearest neighbor, linear discriminant analysis, and support vector machine classifiers. RESULTS: This study achieved a classification accuracy of 98.5% using a nonlinear support vector machine. Our proposed method reduced test time by 28.5 % and saved 85.6 % memory utilization, which reduces complexity significantly and is more accurate than the state-of-the-art method. The generalization of the proposed method is assessed by fifteen-fold cross-validation, and its performance is evaluated using accuracy, specificity, sensitivity, and receiver operating characteristic curves. CONCLUSIONS: In this study, we proposed a method to detect and define the fingerprint region for PDAC using explainable machine learning. This simple, accurate, and efficient method for PDAC detection in mice could be generalized to examine human pancreatic cancer and provide a basis for precise chemotherapy for early cancer treatment.


Assuntos
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Animais , Camundongos , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Curva ROC , Aprendizado de Máquina
3.
J Cell Physiol ; 238(6): 1368-1380, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37021796

RESUMO

Human mesenchymal stem cells (hMSCs) are the cornerstone of regenerative medicine; large quantities of hMSCs are required via in vitro expansion to meet therapeutic purposes. However, hMSCs quickly lose their osteogenic differentiation potential during in vitro expansion, which is a major roadblock to their clinical applications. In this study, we found that the osteogenic differentiation potential of human bone marrow stem cells (hBMSCs), dental pulp stem cells (hDPSCs), and adipose stem cells (hASCs) was severely impaired after in vitro expansion. To clarify the molecular mechanism underlying this in vitro expansion-related loss of osteogenic capacity in hMSCs, the transcriptome changes following in vitro expansion of these hMSCs were compared. Cysteine-rich secretory protein LCCL domain-containing 2 (CRISPLD2) was identified as the most downregulated gene shared by late passage hBMSCs, hDPSCs, and hASCs. Both the secreted and non-secreted CRISPLD2 proteins progressively declined in hMSCs during in vitro expansion when the cells gradually lost their osteogenic potential. We thus hypothesized that the expression of CRISPLD2 is critical for hMSCs to maintain their osteogenic differentiation potential during in vitro expansion. Our studies showed that the knockdown of CRISPLD2 in early passage hBMSCs inhibited the cells' osteogenic differentiation in a siRNA dose-dependent manner. Transcriptome analysis and immunoblotting indicated that the CRISPLD2 knockdown-induced osteogenesis suppression might be attributed to the downregulation of matrix metallopeptidase 1 (MMP1) and forkhead box Q1 (FOXQ1). Furthermore, adeno-associated virus (AAV)-mediated CRISPLD2 overexpression could somewhat rescue the impaired osteogenic differentiation of hBMSCs during in vitro expansion. These results revealed that the downregulation of CRISPLD2 contributes to the impaired osteogenic differentiation of hMSCs during in vitro expansion. Our findings shed light on understanding the loss of osteogenic differentiation in hMSCs and provide a potential therapeutic target gene for bone-related diseases.


Assuntos
Doenças Ósseas , Células-Tronco Mesenquimais , Humanos , Osteogênese/genética , Células-Tronco Mesenquimais/metabolismo , Diferenciação Celular/genética , RNA Interferente Pequeno/metabolismo , Doenças Ósseas/metabolismo , Células Cultivadas , Fatores de Transcrição Forkhead/metabolismo , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Fatores Reguladores de Interferon/metabolismo
4.
Stem Cell Investig ; 10: 3, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36761253

RESUMO

Background: Efficiently delivering nucleic acid into mammalian cells is essential to overexpress genes for assessing gene functions. Human bone marrow stem cells (hBMSCs) are the most studied tissue-derived stem cells. Adeno-associated viruses (AAVs) have been used to deliver DNA into hBMSCs for various purposes. Current literature reported that transduction efficiencies of up to 65% could be achieved by AAV gene delivery into hBMSCs. Further improvement of efficiency is needed and possible. This study tested a selection of AAV serotypes for high-efficient DNA delivery into hBMSCs. Methods: hBMSCs from different donors were infected with different serotypes of AAVs containing the enhanced green fluorescence protein (eGFP) reporter gene driven by the CMV promoter. Green fluorescence was monitored in the infected cells at five-day intervals. Cells were collected at designated time points after the infection for reverse-transcription polymerase chain reaction (RT-PCR) and quantitative reverse-transcription polymerase chain reaction (qRT-PCR) to assess eGFP mRNA transcription. Results: The results indicated that the order of transduction efficiency of the AAV serotypes was AAV2 > AAV2.7m8 > AAV6 > AAV6.2 > AAV1 > AAV-DJ. AAV2 could achieve almost 100% transduction at the multiplicity of infection (MOI) greater than 100K. Over 90% of cells could be transduced at 20K to 50K MOI. About 80% transduction was seen at MOIs of 10K and 15K. RT-PCR analysis showed that eGFP mRNA could be detected from day 5 to day 30 post-AAV infection. The differences in the observed transduction efficiencies of the hBMSCs from different patients indicate donor-to-donor variability, and increased eGFP mRNA was generally seen after day 15 post-AAV2 infection. Maximal eGFP transcription was detected on day 30 post-infection. Conclusions: We conclude that AAV2 and AAV2.7m8 at an MOI of 100K or greater can efficiently deliver transgene into hBMSCs with up to near 100% transduction efficiency for sustained expression over one month. However, donor-to-donor variation exists in transduction efficiency and transgene expression, especially at MOIs less than 100K.

5.
Comput Biol Med ; 146: 105617, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35605486

RESUMO

The early detection of laryngeal cancer significantly increases the survival rates, permits more conservative larynx sparing treatments, and reduces healthcare costs. A non-invasive optical form of biopsy for laryngeal carcinoma can increase the early detection rate, allow for more accurate monitoring of its recurrence, and improve intraoperative margin control. In this study, we evaluated a Raman spectroscopy system for the rapid intraoperative detection of human laryngeal carcinoma. The spectral analysis methods included principal component analysis (PCA), random forest (RF), and one-dimensional (1D) convolutional neural network (CNN) methods. We measured the Raman spectra from 207 normal and 500 tumor sites collected from 10 human laryngeal cancer surgical specimens. Random Forest analysis yielded an overall accuracy of 90.5%, sensitivity of 88.2%, and specificity of 92.8% on average over 10 trials. The 1D CNN demonstrated the highest performance with an accuracy of 96.1%, sensitivity of 95.2%, and specificity of 96.9% on average over 50 trials. In predicting the first three principal components (PCs) of normal and tumor data, both RF and CNN demonstrated high performances, except for the tumor PC2. This is the first study in which CNN-assisted Raman spectroscopy was used to identify human laryngeal cancer tissue with extracted feature weights. The proposed Raman spectroscopy feature extraction approach has not been previously applied to human cancer diagnosis. Raman spectroscopy, as assisted by machine learning (ML) methods, has the potential to serve as an intraoperative, non-invasive tool for the rapid diagnosis of laryngeal cancer and margin detection.


Assuntos
Carcinoma , Neoplasias Laríngeas , Humanos , Neoplasias Laríngeas/diagnóstico por imagem , Aprendizado de Máquina , Redes Neurais de Computação , Análise Espectral Raman/métodos
6.
Cells Tissues Organs ; 211(1): 41-56, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34530424

RESUMO

Dental pulp stem cells (DPSCs) possess strong osteogenic differentiation potential and are promising cell sources in regenerative medicine. However, such differentiation capacity progressively declines during their in vitro expansion. MicroRNAs (miRNAs) play important roles in modulating stem cell differentiation. This study aimed (1) to determine if miR-7a-5p and miR-592 are involved in maintaining and regulating osteogenic differentiation of DPSCs, and (2) to explore their potential regulatory pathways. We found that the expression of miR-7a-5p and miR-592 was significantly upregulated during the expansion of rat DPSCs (rDPSCs). Overexpression of these miRNAs inhibited the osteogenic/odontogenic differentiation of rDPSCs, as evidenced by calcium deposition and osteogenic/odontogenic gene expression. RT-qPCR determined that miR-592 could downregulate heat shock protein B8, whose expression is reduced during the expansion of rDPSCs. Furthermore, RNA-seq and bioinformatics analysis identified significant signaling pathways of miR-7a-5p and miR-592 in regulating osteogenic differentiation, including TNF, MAPK, and PI3K-Akt pathways. We conclude that upregulating miR-7a-5p and miR-592 suppresses the osteogenic differentiation of rDPSCs during their in vitro expansion, likely via TNF, MAPK, and PI3K-Akt pathways. The results may shed light on application of miR-7a-5p and miR-592 for maintaining osteo-differentiation potential in stem cells for bone regeneration and bone-related disease treatment.


Assuntos
MicroRNAs , Osteogênese , Animais , Diferenciação Celular/genética , Células Cultivadas , Polpa Dentária , MicroRNAs/genética , MicroRNAs/metabolismo , Osteogênese/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Células-Tronco
8.
Neural Netw ; 144: 455-464, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34583101

RESUMO

Pancreatic cancer is the deadliest cancer type with a five-year survival rate of less than 9%. Detection of tumor margins plays an essential role in the success of surgical resection. However, histopathological assessment is time-consuming, expensive, and labor-intensive. We constructed a lab-designed, hand-held Raman spectroscopic system that could enable intraoperative tissue diagnosis using convolutional neural network (CNN) models to efficiently distinguish between cancerous and normal pancreatic tissue. To our best knowledge, this is the first reported effort to diagnose pancreatic cancer by CNN-aided spontaneous Raman scattering with a lab-developed system designed for intraoperative applications. Classification based on the original one-dimensional (1D) Raman, two-dimensional (2D) Raman images, and the first principal component (PC1) from the principal component analysis on the 2D image, could all achieve high performance: the testing sensitivity, specificity, and accuracy were over 95%, and the area under the curve approached 0.99. Although CNN models often show great success in classification, it has always been challenging to visualize the CNN features in these models, which has never been achieved in the Raman spectroscopy application in cancer diagnosis. By studying individual Raman regions and by extracting and visualizing CNN features from max-pooling layers, we identified critical Raman peaks that could aid in the classification of cancerous and noncancerous tissues. 2D Raman PC1 yielded more critical peaks for pancreatic cancer identification than that of 1D Raman, as the Raman intensity was amplified by 2D Raman PC1. To our best knowledge, the feature visualization was achieved for the first time in the field of CNN-aided spontaneous Raman spectroscopy for cancer diagnosis. Based on these CNN feature peaks and their frequency at specific wavenumbers, pancreatic cancerous tissue was found to contain more biochemical components related to the protein contents (particularly collagen), whereas normal pancreatic tissue was found to contain more lipids and nucleic acid (particularly deoxyribonucleic acid/ribonucleic acid). Overall, the CNN model in combination with Raman spectroscopy could serve as a useful tool for the extraction of key features that can help differentiate pancreatic cancer from a normal pancreas.


Assuntos
Neoplasias Pancreáticas , Análise Espectral Raman , Humanos , Redes Neurais de Computação , Neoplasias Pancreáticas/diagnóstico por imagem , Análise de Componente Principal
9.
Ann N Y Acad Sci ; 1463(1): 37-44, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31603258

RESUMO

Slow and incomplete osseointegration and loss of osseointegration are major problems in dental and bone implants. We designed implants with interconnected 3D-tubulous structures and hypothesized that such interconnecting 3D (I3D) structures would serve as a repository for chemoattractants to recruit stem cells to promote osseointegration. A concept Laser Mlab-cusing-R laser-powder-bed-fusion (LPBF) 3D printing system was used to produce titanium implants with designed features. The implants were loaded (coated) with stromal cell-derived factor-1 alpha (SDF-1α), and subjected to stem cell recruitment. Implants were then surgically transplanted into the rabbit skull bone. After 12 weeks, osseointegration was analyzed by reverse-torque test and the implants were examined for calcium deposition by Alizarin Red staining. The I3D implants attracted significantly more stem cells than solid implants when coated (loaded) with SDF-1α. Greater torque force was needed to extract the I3D implants with 200 and 300 µm I3D structures than to extract solid implants from the skull. Generally, more calcium deposition was observed on the I3D implants than on the solid counterparts. LPBF 3D printing can be used to fabricate implants with complex structures. I3D-tubulous structures of implants can retain chemoattractant for recruitment of stem cells to enhance osseointegration.


Assuntos
Movimento Celular/fisiologia , Implantes Dentários/tendências , Osseointegração/fisiologia , Impressão Tridimensional , Células-Tronco/fisiologia , Titânio , Animais , Células da Medula Óssea/fisiologia , Implantes Dentários/normas , Humanos , Coelhos
10.
J Cell Physiol ; 235(2): 1723-1732, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31301074

RESUMO

Intracellular Ca2+ signals are essential for stem cell function and play a significant role in the differentiation process. Dental pulp stem cells (DPSCs) are a potential source of stem cells; however, the mechanisms controlling cell differentiation remain largely unknown. Utilizing rat DPSCs, we examined the effect of adenosine triphosphate (ATP) on osteoblast differentiation and characterized its mechanism of action using real-time Ca 2+ imaging analysis. Our results revealed that ATP enhanced osteogenesis as indicated by Ca 2+ deposition in the extracellular matrix via Alizarin Red S staining. This was consistent with upregulation of osteoblast genes BMP2, Mmp13, Col3a1, Ctsk, Flt1, and Bgn. Stimulation of DPSCs with ATP (1-300 µM) increased intracellular Ca 2+ signals in a concentration-dependent manner, whereas histamine, acetylcholine, arginine vasopressin, carbachol, and stromal-cell-derived factor-1α failed to do so. Depletion of intracellular Ca 2+ stores in the endoplasmic reticulum by thapsigargin abolished the ATP responses which, nevertheless, remained detectable under extracellular Ca 2+ free condition. Furthermore, the phospholipase C (PLC) inhibitor U73122 and the inositol triphosphate (IP 3 ) receptor inhibitor 2-aminoethoxydiphenyl borate inhibited the Ca 2+ signals. Our findings provide a better understanding of how ATP controls osteogenesis in DPSCs, which involves a Ca 2+ -dependent mechanism via the PLC-IP 3 pathway. This knowledge could help improve osteogenic differentiation protocols for tissue regeneration of bone structures.


Assuntos
Trifosfato de Adenosina/farmacologia , Sinalização do Cálcio/fisiologia , Polpa Dentária/metabolismo , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/metabolismo , Animais , Sinalização do Cálcio/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Polpa Dentária/citologia , Polpa Dentária/efeitos dos fármacos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteogênese/genética , Osteogênese/fisiologia , Ratos , Ratos Sprague-Dawley , Fosfolipases Tipo C/metabolismo
11.
Sci Rep ; 9(1): 8238, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31160628

RESUMO

X-ray-based imaging, including computed tomography, plays a crucial role in the diagnosis and surgery of impacted teeth that affects over 25% of the human population. But the greatest disadvantage of this technique is ionizing radiation risk to the patients. Here we describe a completely ionizing-radiation-free in vivo near-infrared (NIR) fluoresence dental imaging with indocyanine green (ICG) agent that has rarely been applied in dental imaging. Our method can acquire dental structure images within a short period (only 10 minutes after injection) without ionizing radiation risk. NIR enables the observation of dental structures that are not distinguishable under visible conditions. At prolonged 72 hours, only molar regions remained highlighted; the contrast between molar regions and surrounding tissues was prominent; this is particularly useful for in vivo dental imaging. Using the quantitative spectral analysis, we found the peak wavelengths of ICG fluorescence shifted along with the injection time: the peak wavelength shifted 8 nm (from 819 nm to 811 nm) in 0~72 hours. The injection methods of tail vein v.s. intradermal injections caused ~3 nm shift. ICG-assisted NIR fluorescence imaging can serve as a useful tool for in vivo real-time diagnosis in dental clinics and surgeries without ionizing radiation risk.


Assuntos
Verde de Indocianina/química , Imagem Óptica , Espectroscopia de Luz Próxima ao Infravermelho , Dente/diagnóstico por imagem , Animais , Estudos de Viabilidade , Humanos , Dente Molar/diagnóstico por imagem , Ratos , Erupção Dentária
12.
Arch Oral Biol ; 78: 6-12, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28189884

RESUMO

OBJECTIVE: Odontogenic Ameloblast-Associated Protein (ODAM) is encoded by a secretory calcium-binding phosphoprotein cluster gene, which generally plays an important role for mineralization. Dental follicle (DF) is essential in regulating bone formation for tooth eruption. This study aims to reveal ODAM expression in the DFs of developing and erupting molars, and to determine the possible role of ODAM. DESIGN: DFs were collected from human third molars and rat mandibular molars for gene expression assessment and for establishment of cell cultures. RT-PCR and western blot were conducted to determine ODAM expression. Over- or silencing expression of ODAM in the dental follicle stem cells (DFSCs) was done by transfecting the cells with ODAM plasmid or siRNA to evaluate ODAM effects on osteogenesis. RESULTS: Rat DFs weakly expressed ODAM at early-postnatal days, but a chronological increment of ODAM expression from days 1 to 11 was observed. Differences in expression of ODAM were seen in the human DFs of different individuals. In vitro, ODAM was expressed in DFSCs, but almost no expression in DF-derived fibroblast-like cells. Forcing the DFSCs to overexpress ODAM accelerated osteogenesis, whereas continuously silencing the ODAM in the DFSCs reduced osteogenesis only at 2 weeks of osteogenic induction. CONCLUSIONS: ODAM is differentially expressed in the DFs of different age molars. Its expression is coincident with the increased bone formation of tooth crypt during tooth eruption in rat DFs. Increase of ODAM expression may accelerate osteogenic differentiation of DFSCs. Thus, ODAM expression in the DF may regulate bone formation for timely tooth eruption.


Assuntos
Ameloblastos/citologia , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Transporte/metabolismo , Diferenciação Celular/fisiologia , Saco Dentário/citologia , Odontogênese/fisiologia , Osteogênese/fisiologia , Células-Tronco/citologia , Amiloide , Animais , Western Blotting , Células Cultivadas , Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Neoplasias , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Tempo , Transfecção
13.
Ultrastruct Pathol ; 40(6): 324-332, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27680498

RESUMO

It is estimated that 5.9% of all human deaths are attributable to alcohol consumption and that the harmful use of ethanol ranks among the top five risk factors for causing disease, disability, and death worldwide. Ethanol is known to disrupt phospholipid packing and promote membrane hemifusion at lipid bilayers. With the exception of mitochondria involved in hormone synthesis, the sterol content of mitochondrial membranes is low. As membranes that are low in cholesterol have increased membrane fluidity and are the most easily disordered by ethanol, we hypothesize that mitochondria are sensitive targets for ethanol damage. HeLa cells were exposed to 50 mM ethanol and the direct effects of ethanol on cellular ultrastructure were examined utilizing transmission electron microscopy. Our ultramicroscopic analysis revealed that cells exposed to ethanol harbor fewer incidence of apoptotic morphology; however, significant alterations to mitochondria and to nuclei occurred. We observed statistical increases in the amount of irregular cells and cells with multiple nuclei, nuclei harboring indentations, and nuclei with multiple nucleolus-like bodies. Indeed, our analysis revealed that mitochondrial damage is the most extensive type of cellular damage. Rupturing of cristae was the most prominent damage followed by mitochondrial swelling. Ethanol exposure also resulted in increased amounts of mitochondrial rupturing, organelles with linked membranes, and mitochondria localizing to indentations of nuclear membranes. We theorize that these alterations could contribute to cellular defects in oxidative phosphorylation and, by extension, the inability to generate regular levels of cellular adenosine triphosphate.


Assuntos
Forma Celular , Etanol , Células HeLa , Humanos , Mitocôndrias , Membranas Mitocondriais , Dilatação Mitocondrial
14.
Biol Proced Online ; 18: 8, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26966421

RESUMO

Stem cells are unspecialized/undifferentiated cells that exist in embryos and adult tissues or can be converted from somatic differentiated cells. Use of stem cells for tissue regeneration and tissue engineering has been a cornerstone of the regenerative medicine. Stem cells are also believed to exist in cancer tissues, namely cancer stem cells (CSCs). Growing evidence suggests that CSCs are the culprit of cancer dormancy, progression and recurrence, and thus have recently received great attention. MicroRNAs (miRNAs) are a group of short, non-coding RNAs that regulate expression of a wide range of genes at a post-transcriptional manner. They are emerging as key regulators of stem cell behaviors. This mini review summarizes the basic biogenesis and mode of actions of miRNAs, recent progress and discoveries of miRNAs in cellular reprogramming, stem cell differentiation and cellular communication, as well as miRNAs in CSCs. Some potential of miRNAs in future biomedical applications and research pertaining to stem cells are briefly discussed.

15.
Cytotherapy ; 17(11): 1572-81, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26342992

RESUMO

BACKGROUND AIMS: Stem cell-based tissue regeneration offers potential for treatment of craniofacial bone defects. The dental follicle, a loose connective tissue surrounding the unerupted tooth, has been shown to contain progenitor/stem cells. Dental follicle stem cells (DFSCs) have strong osteogenesis capability, which makes them suitable for repairing skeletal defects. The objective of this study was to evaluate bone regeneration capability of DFSCs loaded into polycaprolactone (PCL) scaffold for treatment of craniofacial defects. METHODS: DFSCs were isolated from the first mandibular molars of postnatal Sprague-Dawley rats and seeded into the PCL scaffold. Cell attachment and cell viability on the scaffold were examined with the use of scanning electron microscopy and alamar blue reduction assay. For in vivo transplantation, critical-size defects were created on the skulls of 5-month-old immunocompetent rats, and the cell-scaffold constructs were transplanted into the defects. RESULTS: Skulls were collected at 4 and 8 weeks after transplantation, and bone regeneration in the defects was evaluated with the use of micro-computed tomography and histological analysis. Scanning electron microscopy and Alamar blue assay demonstrated attachment and proliferation of DFSCs in the PCL scaffold. Bone regeneration was observed in the defects treated with DFSC transplantation but not in the controls without DFSC transplant. Transplanting DFSC-PCL with or without osteogenic induction before transplantation achieved approximately 50% bone regeneration at 8 weeks. Formation of woven bone was observed in the DFSC-PCL treatment group. Similar results were seen when osteogenic-induced DFSC-PCL was transplanted to the critical-size defects. CONCLUSIONS: This study demonstrated that transplantation of DFSCs seeded into PCL scaffolds can be used to repair craniofacial defects.


Assuntos
Regeneração Óssea , Saco Dentário/citologia , Transplante de Células-Tronco/métodos , Células-Tronco/fisiologia , Animais , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Sobrevivência Celular , Anormalidades Craniofaciais/terapia , Feminino , Masculino , Microscopia Eletrônica de Varredura , Dente Molar , Osteogênese , Poliésteres , Ratos Sprague-Dawley , Crânio/lesões , Microtomografia por Raio-X
16.
Connect Tissue Res ; 53(5): 366-72, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22313323

RESUMO

Tooth eruption requires osteoclastogenesis and subsequent bone resorption. Secreted frizzled-related protein-1 (SFRP-1) negatively regulates osteoclastogenesis. Our previous studies indicated that SFRP-1 is expressed in the rat dental follicle (DF), with reduced expression at days 3 and 9 close to the times for the major and minor bursts of osteoclastogenesis, respectively; but it remains unclear as to what molecules contribute to its reduced expression at these critical times. Thus, it was the aim of this study to determine which molecules regulate the expression of SFRP-1 in the DF. To that end, the DF cells were treated with cytokines that are maximally expressed at days 3 or 9, and SFRP-1 expression was determined. Our study indicated that colony-stimulating factor-1 (CSF-1), a molecule maximally expressed in the DF at day 3, down-regulated SFRP-1 expression. As to endothelial monocyte-activating polypeptide II (EMAP-II), a highly expressed molecule in the DF at day 3, it had no effect on the expression of SFRP-1. However, when EMAP-II was knocked down by siRNA, the expression of SFRP-1 was elevated, and this elevated SFRP-1 expression could be reduced by adding recombinant EMAP-II protein. This suggests that EMAP-II maintained a lower level of SFRP-1 in the DF. TNF-α is a molecule maximally expressed at day 9, and this study indicated that it also down-regulated the expression of SFRP-1 in the DF cells. In conclusion, CSF-1 and EMAP-II may contribute to the reduced SFRP-1 expression seen on day 3, while TNF-α may contribute to the reduced SFRP-1 expression at day 9.


Assuntos
Saco Dentário/metabolismo , Regulação da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas de Membrana/genética , Animais , Saco Dentário/citologia , Saco Dentário/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Fator Estimulador de Colônias de Macrófagos/farmacologia , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Transfecção , Fator de Necrose Tumoral alfa/farmacologia , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
17.
Eur J Oral Sci ; 118(4): 333-41, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20662905

RESUMO

Myeloid differentiation factor 88 (MyD88) is a key adaptor molecule in the interleukin (IL)-1 and IL-18 toll-like receptor signaling pathways. Because MyD88 is present in dental follicle (DF) cells in vitro, the purpose of this study was to determine its chronological expression in vivo, as well as its possible role in osteoclastogenesis and tooth eruption. An oligo DNA microarray was used to determine expression of the Myd88 gene in vivo in the DFs from the first mandibular molars of postnatal rats from days 1 to 11. The results showed that MyD88 was expressed maximally on day 3. Using small interfering RNA (siRNA) to knock down MyD88 expression in the DF cells also reduced the expression of the nuclear factor-kappa B-1 (NFKB1) and monocyte chemoattractant protein 1 (MCP-1) genes. Interleukin-1alpha up-regulated the expression of NFKB1, MCP-1, and receptor activator of nuclear factor kappa B ligand (RANKL), but knockdown of MyD88 nullified this IL-1alpha effect. Conditioned medium from DF cells with MyD88 knocked down had reduced chemotactic activity for mononuclear cells and reduced osteoclastogenesis, as opposed to controls. In conclusion, the maximal expression of MyD88 in the DF of postnatal day 3 rats may contribute to the major burst of osteoclastogenesis needed for eruption by up-regulating MCP-1 and RANKL expression.


Assuntos
Saco Dentário/citologia , Fator 88 de Diferenciação Mieloide/análise , Osteoclastos/fisiologia , Erupção Dentária/fisiologia , Animais , Quimiocina CCL2/análise , Quimiotaxia de Leucócito/fisiologia , Meios de Cultivo Condicionados , Citocinas/análise , Inativação Gênica , Interleucina-1alfa/farmacologia , Leucócitos Mononucleares/fisiologia , Dente Molar , Fator 88 de Diferenciação Mieloide/genética , NF-kappa B/análise , Ligante RANK/análise , RNA Interferente Pequeno/genética , Ratos , Fatores de Tempo , Transfecção , Regulação para Cima
18.
Connect Tissue Res ; 51(1): 59-66, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20067418

RESUMO

The dental follicle appears to regulate both the alveolar bone resorption and bone formation needed for tooth eruption. Tumor necrosis factor-alpha (TNF-alpha) gene expression is maximally upregulated at postnatal day 9 in the rat dental follicle of the first mandibular molar, a time that correlates with rapid bone growth at the base of the tooth crypt, as well as a minor burst of osteoclastogenesis. TNF-alpha expression is correlated with the expression of bone morphogenetic protein-2 (BMP-2), a molecule expressed in the dental follicle that can promote bone formation. Because BMP-2 signaling may be augmented by bone morphogenetic protein-3 (BMP-3), our objective in this study was to determine if the dental follicle expresses BMP-3 and if TNF-alpha stimulates the dental follicle cells to express BMP-2 and BMP-3. Dental follicles were collected from different postnatal ages of rat pups. Dental follicle cells were incubated with TNF-alpha to study its dosage and time-course effects on gene expression of BMP-2 and BMP-3, as determined by real-time RT-PCR. Next, immunostaining was conducted to confirm if the protein was synthesized and ELISA of the conditioned medium was conducted to determine if BMP-2 was secreted. We found that BMP-3 expression is correlated with the expression of TNF-alpha in the dental follicle and TNF-alpha significantly increased BMP-2 and BMP-3 expression in vitro. Immunostaining and ELISA showed that BMP-2 and BMP-3 were synthesized and secreted. This study suggests that TNF-alpha can upregulate the expression of bone formation genes that may be needed for tooth eruption.


Assuntos
Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 3/genética , Saco Dentário/crescimento & desenvolvimento , Saco Dentário/metabolismo , Erupção Dentária/fisiologia , Fator de Necrose Tumoral alfa/metabolismo , Animais , Desenvolvimento Ósseo/genética , Remodelação Óssea/genética , Saco Dentário/citologia , Ensaio de Imunoadsorção Enzimática , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Imuno-Histoquímica , Masculino , Mandíbula/citologia , Mandíbula/crescimento & desenvolvimento , Mandíbula/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Regulação para Cima/genética
19.
Arch Oral Biol ; 52(3): 228-32, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17116292

RESUMO

OBJECTIVE: Tooth eruption is a localized event that requires the expression of certain molecules at precise times to regulate bone resorption and bone formation. Parathyroid hormone-related protein (PTHrP) may be one of those molecules. Although PTHrP is produced in the stellate reticulum (SR) of the tooth and exerts its effect on the adjacent dental follicle, its expression pattern in the SR is unknown. Thus, it was the objectives of this study to determine the chronology of expression of PTHrP, and then to determine its effect on vascular endothelial growth factor (VEGF) expression for osteoclastogenesis and on bone morphogenetic protein-2 (BMP-2) for bone growth. DESIGN: Laser capture microdissection and RT-PCR were used to determine the chronological expression of PTHrP in vivo. In vitro, dental follicle cells were incubated with PTHrP and RT-PCR was conducted to determine its effect on VEGF and BMP-2 gene expression. RESULTS: PTHrP was maximally expressed at day 7 postnatally in the SR with the level of expression still high at day 9. In vitro, PTHrP upregulated VEGF120 and VEGF164 expression after 4h of incubation with a maximum effect at 6h. PTHrP upregulated BMP-2 gene expression with a maximal effect at 2h. CONCLUSIONS: Because the secondary burst of osteoclastogenesis needed for eruption occurs around day 10, it is possible that PTHrP is stimulating this osteoclastogenesis by upregulating VEGF. Concurrently, the upregulation of BMP-2 by PTHrP may stimulate bone growth at the base of the bony crypt to promote eruption.


Assuntos
Expressão Gênica/genética , Proteína Relacionada ao Hormônio Paratireóideo/genética , Erupção Dentária/genética , Animais , Proteína Morfogenética Óssea 2 , Proteínas Morfogenéticas Ósseas/genética , Células Cultivadas , Saco Dentário/citologia , Mandíbula/crescimento & desenvolvimento , Dente Molar , Osteoclastos/fisiologia , Ratos , Ratos Sprague-Dawley , Fator de Crescimento Transformador beta/genética , Fator A de Crescimento do Endotélio Vascular/genética
20.
Eur J Oral Sci ; 114(6): 512-6, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17184234

RESUMO

Tooth eruption requires alveolar bone resorption and bone formation. The coronal half of the dental follicle probably mediates the bone resorption seen in the coronal region of the alveolar bony crypt, and the basal half of the follicle mediates bone growth in the basal region. We hypothesized that the expression of a gene for bone resorption--receptor activator of nuclear factor kappa B ligand (RANKL)--would be higher in the coronal than in the basal region of the follicle. Conversely, the level of expression of bone morphogenetic protein-2 (BMP-2), a gene for bone formation, would be higher in the basal region. Results obtained using laser-capture microdissection and real-time reverse transcription-polymerase chain reaction (RT-PCR) confirmed the hypothesis. Scanning electron micrographs of the bony crypt showed that the coronal area of the crypt was scalloped in appearance (bone resorption), whereas the basal area was trabecular (bone formation). Thus, the differences in bone activity at opposite poles of the crypt appear to be caused by differences in the regional expression of genes in the dental follicle and suggest a molecular mechanism whereby the dental follicle could regulate both the alveolar bone resorption and formation needed for eruption.


Assuntos
Proteínas Morfogenéticas Ósseas/biossíntese , Saco Dentário/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Ligante RANK/biossíntese , Erupção Dentária/fisiologia , Fator de Crescimento Transformador beta/biossíntese , Animais , Animais Recém-Nascidos , Proteína Morfogenética Óssea 2 , Remodelação Óssea/fisiologia , Microdissecção , RNA/análise , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alvéolo Dental/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA