Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 352: 141507, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38387663

RESUMO

Heavy metals in soil, water, and industrial production can affect the antibiotic resistance of bacteria. Antibiotic resistance in gut microbiota has been extensively researched. The effects of cadmium (Cd) was investigated on the gut microbiota and antibiotic resistance genes (ARGs) of Haliotis diversicolor, a commercially important abalone species. By exposing H. diversicolor to four concentrations of Cd (0 µg L-1 (control), 6.5 µg L-1 (low), 42.25 µg L-1 (medium), and 274.63 µg L-1 (high)) for 30 and 60 days, 16 types of ARG (aadA-01, aadA-02, cfr, dfrA1, ermB, floR, folA, mecA, sul2, tetB-01, tetC-01, tetD-01, tetG-01, tetM-02, tetQ, vanC-01), and 1213 genus and 27 phylum microbiomes were detected. ARGs can be resistant to aminoglycoside, beta-lactamase, macrolide-lincosamide-streptogramin B, multidrug, florfenicol, macrolide, sulfonamides, tetracyclines, and vancomycin. Cadmium exposure significantly alters the abundance of tetC-01, tetB-01, tetQ, sul2, and aadA-01. About 5% (61) of genus-level microorganisms were significantly affected by Cd exposure. Microbiota alpha and beta diversities in the 60-day 42.25 µg L-1 Cd treatment differed significantly from those in other treatments. In addition, 26 pathogens were detected, and two pathogens (Vibrio and Legionella) were significantly affected by Cd exposure. Significant correlations between pathogens and ARGs increased with increased Cd concentration after 60 days of Cd exposure. Cadmium exposure may cause gut microbiota disturbance in H. diversicolor and increase the likelihood of ARG transfer to pathogens, increasing potential ecological and economic risks.


Assuntos
Antibacterianos , Microbioma Gastrointestinal , Antibacterianos/farmacologia , Cádmio/toxicidade , Genes Bacterianos , Microbioma Gastrointestinal/genética , Resistência Microbiana a Medicamentos/genética , Macrolídeos
2.
Chemosphere ; 341: 140027, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37659513

RESUMO

Triploid Fujian oyster (Crassostrea angulata) is crucial to aquaculture and coastal ecosystems because of its accelerated growth and heightened resilience against environmental stressors. In light of the increasing prevalence of nanoplastic pollution in the ocean, understanding its potential impact on this organism, particularly its adaptive responses, is of paramount importance. Despite this, the effects of nanoplastic pollution on the physiology of C. angulata remain largely unexplored. In this study, we explored the responses of triploid Fujian oysters to nanoplastic stress during a 14-day exposure period, employing an integrative methodology that included physiological, metabolomic, and 16S rRNA sequencing analyses. Our results demonstrate that the oysters exhibit a strong adaptive response to nanoplastic exposure, characterized by alterations in enzyme activity, metabolic pathways, and microbial community composition, indicative of an adaptive recovery state as opposed to a disordered state. Oysters subjected to elevated nanoplastic levels exhibited adaptive responses primarily by boosting the activity of the antioxidant enzyme catalase and elevating the levels of antioxidants such as adenosine, 3-(4-hydroxyphenyl)pyruvate, D-sorbitol, d-mannose, and unsaturated fatty acids, as well as the functional amino acids l-proline and l-lysine. Nanoplastic treatment also resulted in increased activity of succinate dehydrogenase, a key component of energy metabolism, and increased contents of intermediate metabolites or products of energy metabolism, such as adenosine monophosphate, adenosine, guanosine, creatine, and thiamine. Nanoplastic treatment led to an increase in the abundance of certain advantageous genera of gut bacteria, specifically Phaeobacter and Nautella. The observed adaptive response of triploid Fujian oysters to nanoplastic stress provides valuable insights into the mechanisms underpinning resilience in marine bivalves.


Assuntos
Crassostrea , Animais , Crassostrea/genética , Microplásticos , Triploidia , Ecossistema , RNA Ribossômico 16S/genética , Adenosina , Antioxidantes
3.
J Hazard Mater ; 389: 121834, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-31843407

RESUMO

Environmental problems caused by the large-scale use of chemical pesticides are becoming more and more serious, and the removal of chemical pesticides from the ecological environment by microbial degradation has attracted wide attention. In this study, using enrichment screening with seven chemical pesticides as the sole carbon source, a mixed microbial culture (PCS-1) was obtained from the continuous cropping of strawberry fields. The microbial community composition, degradation ability, and detoxification effect of PCS-1 was determined for the seven pesticides. Inoculation with PCS-1 showed significant degradation of and tolerance to the seven pesticides. Microbial community composition analysis indicated that Pseudomonas, Enterobacter, Aspergillus, and Rhodotorula were the dominant genera for the degradation of the seven pesticides by PCS-1. The concentration of the seven pesticides was 10 mg L-1 in hydroponic and soil culture experiments. The fresh weight, plant height, and root length of PCS-1-inoculated alfalfa (Medicago sativa) significantly increased compared with those of non-PCS-1-inoculated M. sativa. PCS-1 not only effectively degraded the residual content of the seven pesticides in water and soil but also reduced the pesticide residues in the roots, stems, and leaves of M. sativa. This study shows that PCS-1 may be important in environmental remediation involving the seven pesticides.


Assuntos
Poluentes Ambientais/análise , Medicago sativa/efeitos dos fármacos , Microbiota/efeitos dos fármacos , Praguicidas/análise , Microbiologia do Solo , Poluentes do Solo/análise , Aspergillus/efeitos dos fármacos , Aspergillus/crescimento & desenvolvimento , Biodegradação Ambiental , Enterobacter/efeitos dos fármacos , Enterobacter/crescimento & desenvolvimento , Poluentes Ambientais/toxicidade , Medicago sativa/crescimento & desenvolvimento , Resíduos de Praguicidas/análise , Resíduos de Praguicidas/toxicidade , Praguicidas/toxicidade , Pseudomonas/efeitos dos fármacos , Pseudomonas/crescimento & desenvolvimento , Rhodotorula/efeitos dos fármacos , Rhodotorula/crescimento & desenvolvimento , Poluentes do Solo/toxicidade
4.
Artigo em Inglês | MEDLINE | ID: mdl-31078702

RESUMO

As one of antimicrobial peptides (AMPs), defensins are involved in invertebrate innate immunity against invading pathogens. In this study, a member of the invertebrate defensins was cloned and characterized from the small abalone Haliotis diversicolor, designated HdDef-2. The HdDef-2 cDNA contained a 201 bp open reading frame encoding 66 amino acids including a signal peptide of 18 amino acids and a mature peptide of 48 amino acids. The mature peptide of HdDef-2 possessed similar features to other AMPs, such as lower molecular mass, net positive charge (+1), and a high hydrophobic residue ratio (45%). In addition, six cysteines in the mature peptide were arranged in the pattern C-X16-C-X3-C-X9-C-X4-C-X1-C and stabilized the α-helix/ß-sheet motif (CSαß) with three disulfide bonds (C1-C4, C2-C5 and C3-C6) in the predicted tertiary structure. Moreover, the similar three-dimensional structure to Anopheles gambiae defensin and a phylogenetic analysis suggest that HdDef-2 may be a new member of the arthropod defensin family. Quantitative real-time PCR analysis revealed that HdDef-2 transcripts were constitutively expressed in the mantle, gill, hepatopancreas, and foot, with the highest level in the hepatopancreas. It was observed that HdDef-2 transcripts were significantly induced in the hepatopancreas after infection by Vibrio harveyi. These results indicate that HdDef-2 may be involved in the immune response against invading pathogenic bacteria, but future work is needed to verify its antimicrobial activity in protein level and elucidate the underlying mechanisms.


Assuntos
Defensinas/genética , Defensinas/imunologia , Gastrópodes/genética , Gastrópodes/imunologia , Sequência de Aminoácidos , Animais , Sequência de Bases , DNA Complementar/genética , Defensinas/química , Gastrópodes/metabolismo , Expressão Gênica , Interações entre Hospedeiro e Microrganismos/genética , Interações entre Hospedeiro e Microrganismos/imunologia , Imunidade Inata/genética , Modelos Moleculares , Filogenia , Conformação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Distribuição Tecidual , Vibrio/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA