Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 297(2): 100964, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34270960

RESUMO

Vacuolar H+-ATPases (V-ATPases) are large, multisubunit proton pumps that acidify the lumen of organelles in virtually every eukaryotic cell and in specialized acid-secreting animal cells, the enzyme pumps protons into the extracellular space. In higher organisms, most of the subunits are expressed as multiple isoforms, with some enriched in specific compartments or tissues and others expressed ubiquitously. In mammals, subunit a is expressed as four isoforms (a1-4) that target the enzyme to distinct biological membranes. Mutations in a isoforms are known to give rise to tissue-specific disease, and some a isoforms are upregulated and mislocalized to the plasma membrane in invasive cancers. However, isoform complexity and low abundance greatly complicate purification of active human V-ATPase, a prerequisite for developing isoform-specific therapeutics. Here, we report the purification of an active human V-ATPase in native lipid nanodiscs from a cell line stably expressing affinity-tagged a isoform 4 (a4). We find that exogenous expression of this single subunit in HEK293F cells permits assembly of a functional V-ATPase by incorporation of endogenous subunits. The ATPase activity of the preparation is >95% sensitive to concanamycin A, indicating that the lipid nanodisc-reconstituted enzyme is functionally coupled. Moreover, this strategy permits purification of the enzyme's isolated membrane subcomplex together with biosynthetic assembly factors coiled-coil domain-containing protein 115, transmembrane protein 199, and vacuolar H+-ATPase assembly integral membrane protein 21. Our work thus lays the groundwork for biochemical characterization of active human V-ATPase in an a subunit isoform-specific manner and establishes a platform for the study of the assembly and regulation of the human holoenzyme.


Assuntos
ATPases Vacuolares Próton-Translocadoras , Transporte Biológico , Membrana Celular/metabolismo , Humanos , Saccharomyces cerevisiae/metabolismo
2.
J Biol Chem ; 293(8): 2787-2800, 2018 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-29311258

RESUMO

The a subunit is the largest of 15 different subunits that make up the vacuolar H+-ATPase (V-ATPase) complex, where it functions in proton translocation. In mammals, this subunit has four paralogous isoforms, a1-a4, which may encode signals for targeting assembled V-ATPases to specific intracellular locations. Despite the functional importance of the a subunit, its structure remains controversial. By studying molecular mechanisms of human disease-causing missense mutations within a subunit isoforms, we may identify domains critical for V-ATPase targeting, activity and/or regulation. cDNA-encoded FLAG-tagged human wildtype ATP6V0A2 (a2) and ATP6V0A4 (a4) subunits and their mutants, a2P405L (causing cutis laxa), and a4R449H and a4G820R (causing renal tubular acidosis, dRTA), were transiently expressed in HEK 293 cells. N-Glycosylation was assessed using endoglycosidases, revealing that a2P405L, a4R449H, and a4G820R were fully N-glycosylated. Cycloheximide (CHX) chase assays revealed that a2P405L and a4R449H were unstable relative to wildtype. a4R449H was degraded predominantly in the proteasomal pathway, whereas a2P405L was degraded in both proteasomal and lysosomal pathways. Immunofluorescence studies disclosed retention in the endoplasmic reticulum and defective cell-surface expression of a4R449H and defective Golgi trafficking of a2P405L Co-immunoprecipitation studies revealed an increase in association of a4R449H with the V0 assembly factor VMA21, and a reduced association with the V1 sector subunit, ATP6V1B1 (B1). For a4G820R, where stability, degradation, and trafficking were relatively unaffected, 3D molecular modeling suggested that the mutation causes dRTA by blocking the proton pathway. This study provides critical information that may assist rational drug design to manage dRTA and cutis laxa.


Assuntos
Acidose Tubular Renal/genética , Cútis Laxa/genética , Modelos Moleculares , Mutação de Sentido Incorreto , Processamento de Proteína Pós-Traducional , ATPases Translocadoras de Prótons/genética , ATPases Vacuolares Próton-Translocadoras/genética , Acidose Tubular Renal/metabolismo , Acidose Tubular Renal/patologia , Substituição de Aminoácidos , Membrana Celular/enzimologia , Membrana Celular/metabolismo , Membrana Celular/patologia , Cútis Laxa/metabolismo , Cútis Laxa/patologia , Retículo Endoplasmático/enzimologia , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/patologia , Estabilidade Enzimática , Glicosilação , Complexo de Golgi/enzimologia , Complexo de Golgi/metabolismo , Complexo de Golgi/patologia , Células HEK293 , Humanos , Rim/enzimologia , Rim/metabolismo , Rim/patologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Transporte Proteico , Proteólise , ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , ATPases Vacuolares Próton-Translocadoras/química , ATPases Vacuolares Próton-Translocadoras/metabolismo
3.
J Cell Biochem ; 114(4): 929-41, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23129004

RESUMO

V-ATPase-mediated acid secretion is required for osteoclast bone resorption. Osteoclasts are enriched in V-ATPase a3 and d2 subunit isoforms, and disruption of either of their genes impairs bone resorption. Using purified fusion proteins of a3 N-terminal domain (NTa3) and full-length d subunits we determined in a solid-phase binding assay that half-maximal binding of d1 or d2 to immobilized NTa3 occurs at 3.1 ± 0.4 or 3.6 ± 0.6 nM, respectively, suggesting equally high-affinity interactions. A high-throughput modification of this assay was then used to screen chemical libraries for a3-d2 interaction inhibitors, and luteolin, a naturally occurring flavonoid, was identified, with half-maximal inhibition at 2.4 ± 0.9 µM. Luteolin did not significantly affect NIH/3T3 or RAW 264.7 cell viability, nor did it affect cytokine-induced osteoclastogenesis of RAW 264.7 cells or bone marrow mononuclear cells at concentrations ≤ 40 µM. Luteolin inhibited osteoclast bone resorption with an EC(50) of approximately 2.5 µM, without affecting osteoclast actin ring formation. Luteolin-treated osteoclasts produced deeper resorption pits, but with decreased surface area, resulting in overall decreased pit volume. Luteolin did not affect transcription, or protein levels, of V-ATPase subunits a3, d2, and E, or V(1) V(0) assembly. Previous work has shown that luteolin can be effective in reducing bone resorption, and our studies suggest that this effect of luteolin may be through disruption of osteoclast V-ATPase a3-d2 interaction. We conclude that the V-ATPase a3-d2 interaction is a viable target for novel anti-resorptive therapeutics that potentially preserve osteoclast-osteoblast signaling important for bone remodeling.


Assuntos
Reabsorção Óssea/patologia , Luteolina/farmacologia , Complexos Multiproteicos/antagonistas & inibidores , Osteoclastos/efeitos dos fármacos , ATPases Vacuolares Próton-Translocadoras/metabolismo , Actinas/metabolismo , Animais , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Tamanho Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Isoenzimas/metabolismo , Camundongos , Células NIH 3T3 , Osteoclastos/metabolismo , Osteoclastos/patologia , Osteogênese , Mapeamento de Interação de Proteínas , Proteínas Recombinantes de Fusão/metabolismo
4.
J Biol Chem ; 281(36): 26102-11, 2006 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-16840787

RESUMO

V-ATPases are multimeric proton pumps. The 100-kDa "a" subunit is encoded by four isoforms (a1-a4) in mammals and two (Vph1p and Stv1p) in yeast. a3 is enriched in osteoclasts and is essential for bone resorption, whereas a4 is expressed in the distal nephron and acidifies urine. Mutations in human a3 and a4 result in osteopetrosis and distal renal tubular acidosis, respectively. Human a3 (G405R and R444L) and a4 (P524L and G820R) mutations were recreated in the yeast ortholog Vph1p, a3 (G424R and R462L), and a4 (W520L and G812R). Mutations in a3 resulted in wild type vacuolar acidification and growth on media containing 4 mM ZnCl2, 200 mM CaCl2, or buffered to pH 7.5 with V-ATPase hydrolytic and pumping activity decreased by 30-35%. Immunoblots confirmed wild type levels for V-ATPase a, A, and B subunits on vacuolar membranes. a4 G812R resulted in defective growth on selective media with V-ATPase hydrolytic and pumping activity decreased by 83-85% yet with wild type levels of a, A, and B subunits on vacuolar membranes. The a4 W520L mutation had defective growth on selective media with no detectable V-ATPase activity and reduced expression of a, A, and B subunits. The a4 W520L mutation phenotypes were dominant negative, as overexpression of wild type yeast a isoforms, Vph1p, or Stv1p, did not restore growth. However, deletion of endoplasmic reticulum assembly factors (Vma12p, Vma21p, and Vma22p) partially restored a and B expression. That a4 W520L affects both Vo and V1 subunits is a unique phenotype for any V-ATPase subunit mutation and supports the concerted pathway for V-ATPase assembly in vivo.


Assuntos
Acidose Tubular Renal , Isoenzimas , Mutação , Osteopetrose , Subunidades Proteicas , Proteínas de Saccharomyces cerevisiae , ATPases Vacuolares Próton-Translocadoras , Acidose Tubular Renal/enzimologia , Acidose Tubular Renal/genética , Trifosfato de Adenosina/metabolismo , Animais , Inibidores Enzimáticos/metabolismo , Genótipo , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Macrolídeos/metabolismo , Camundongos , Osteopetrose/enzimologia , Osteopetrose/genética , Fenótipo , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo , Vacúolos/química
5.
J Biol Chem ; 277(4): 2657-65, 2002 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-11714693

RESUMO

Aggrecan is the major proteoglycan in the extracellular matrix of cartilage. A notable exception is nanomelic cartilage, which lacks aggrecan in its matrix. The example of nanomelia and other evidence leads us to believe that the G3 domain plays an important role in aggrecan processing, and it has indeed been confirmed that G3 allows glycosaminoglycan (GAG) chain attachment and product secretion. However, it is not clear how G3, which contains at least a carbohydrate recognition domain (CRD) and a complement binding protein (CBP) motif, plays these two functional roles. The present study was designed to dissect the mechanisms of this phenomenon and specially 1) to determine the effects of various cysteine residues in GAG modification and product secretion as well as 2) to investigate which of the two processing events is the critical step in the product processing. Our studies demonstrated that removal of the two amino-terminal cysteines in the CRD motif and the single cysteine in the amino terminus of CBP inhibited secretion of CRD and CBP. Use of the double mutant CRD construct also allowed us to observe a deviation from the usual strict coupling of GAG modification and product secretion steps. The presence of a small chondroitin sulfate fragment overcame the secretion-inhibitory effects once the small chondroitin sulfate fragment was modified by GAG.


Assuntos
Proteínas da Matriz Extracelular , Proteoglicanas/química , Agrecanas , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Sequência de Bases , Células COS , Sulfatos de Condroitina/metabolismo , Condroitinases e Condroitina Liases/farmacologia , Cisteína/química , Cisteína/metabolismo , DNA Ligases , DNA Complementar/metabolismo , Dissulfetos , Deleção de Genes , Glicosaminoglicanos/química , Lectinas Tipo C , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Ligação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA