Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 241
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Res Sq ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38798691

RESUMO

Background: Neoadjuvant therapy (NAT) is increasingly being used for pancreatic ductal adenocarcinoma (PDAC) treatment. However, its specific effects on carcinoma cells and the tumor microenvironment (TME) are not fully understood. This study aims to investigate how NAT differentially impacts PDAC's carcinoma cells and TME. Methods: Spatial transcriptomics was used to compare gene expression profiles in carcinoma cells and the TME between 23 NAT-treated and 13 NAT-naïve PDAC patients, correlating with their clinicopathologic features. Analysis of an online single-nucleus RNA sequencing (snRNA-seq) dataset was performed for validation of the specific cell types responsible for NAT-induced gene expression alterations. Results: NAT not only induces apoptosis and inhibits proliferation in carcinoma cells but also significantly remodels the TME. Notably, NAT induces a coordinated upregulation of multiple key complement genes (C3, C1S, C1R, C4B and C7) in the TME, making the complement pathway one of the most significantly affected pathways by NAT. Patients with higher TME complement expression following NAT exhibit improved overall survival. These patients also exhibit increased immunomodulatory and neurotrophic cancer-associated fibroblasts (CAFs); more CD4+ T cells, monocytes, and mast cells; and reduced immune exhaustion gene expression. snRNA-seq analysis demonstrates C3 complement was specifically upregulated in CAFs but not in other stroma cell types. Conclusions: NAT can enhance complement production and signaling within the TME, which is associated with reduced immunosuppression in PDAC. These findings suggest that local complement dynamics could serve as a novel biomarker for prognosis, evaluating treatment response and resistance, and guiding therapeutic strategies in NAT-treated PDAC patients.

2.
Biomedicines ; 12(4)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38672111

RESUMO

Interleukin-17 (IL-17) is a pro-inflammatory cytokine that participates in innate and adaptive immune responses and plays an important role in host defense, autoimmune diseases, tissue regeneration, metabolic regulation, and tumor progression. Post-translational modifications (PTMs) are crucial for protein function, stability, cellular localization, cellular transduction, and cell death. However, PTMs of IL-17 receptor A (IL-17RA) have not been investigated. Here, we show that human IL-17RA was targeted by F-box and WD repeat domain-containing 11 (FBXW11) for ubiquitination, followed by proteasome-mediated degradation. We used bioinformatics tools and biochemical techniques to determine that FBXW11 ubiquitinated IL-17RA through a lysine 27-linked polyubiquitin chain, targeting IL-17RA for proteasomal degradation. Domain 665-804 of IL-17RA was critical for interaction with FBXW11 and subsequent ubiquitination. Our study demonstrates that FBXW11 regulates IL-17 signaling pathways at the IL-17RA level.

3.
Cancer Lett ; 590: 216844, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38582394

RESUMO

Proper protein folding relies on the assistance of molecular chaperones post-translation. Dysfunctions in chaperones can cause diseases associated with protein misfolding, including cancer. While previous studies have identified CCT2 as a chaperone subunit and an autophagy receptor, its specific involvement in glioblastoma remains unknown. Here, we identified CCT2 promote glioblastoma progression. Using approaches of coimmunoprecipitation, mass spectrometry and surface plasmon resonance, we found CCT2 directly bound to KRAS leading to increased stability and upregulated downstream signaling of KRAS. Interestingly, we found that dihydroartemisinin, a derivative of artemisinin, exhibited therapeutic effects in a glioblastoma animal model. We further demonstrated direct binding between dihydroartemisinin and CCT2. Treatment with dihydroartemisinin resulted in decreased KRAS expression and downstream signaling. Highlighting the significance of CCT2, CCT2 overexpression rescued the inhibitory effect of dihydroartemisinin on glioblastoma. In conclusion, the study demonstrates that CCT2 promotes glioblastoma progression by directly binding to and enhancing the stability of the KRAS protein. Additionally, dihydroartemisinin inhibits glioblastoma by targeting the CCT2 and the following KRAS signaling. Our findings overcome the challenge posed by the undruggable nature of KRAS and offer potential therapeutic strategies for glioblastoma treatment.


Assuntos
Chaperonina com TCP-1 , Glioblastoma , Estabilidade Proteica , Proteínas Proto-Oncogênicas p21(ras) , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Glioblastoma/metabolismo , Glioblastoma/genética , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Animais , Chaperonina com TCP-1/metabolismo , Chaperonina com TCP-1/genética , Linhagem Celular Tumoral , Estabilidade Proteica/efeitos dos fármacos , Artemisininas/farmacologia , Progressão da Doença , Ensaios Antitumorais Modelo de Xenoenxerto , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Camundongos Nus , Transdução de Sinais/efeitos dos fármacos , Camundongos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos
4.
Cell Commun Signal ; 22(1): 154, 2024 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-38419089

RESUMO

BACKGROUND: Although GqPCR activation often leads to cell survival by activating the PI3K/AKT pathway, it was previously shown that in several cell types AKT activity is reduced and leads to JNK activation and apoptosis. The mechanism of AKT inactivation in these cells involves an IGBP1-coupled PP2Ac switch that induces the dephosphorylation and inactivation of both PI3K and AKT. However, the machinery involved in the initiation of PP2A switch is not known. METHODS: We used phospho-mass spectrometry to identify the phosphorylation site of PP2Ac, and raised specific antibodies to follow the regulation of this phosphorylation. Other phosphorylations were monitored by commercial antibodies. In addition, we used coimmunoprecipitation and proximity ligation assays to follow protein-protein interactions. Apoptosis was detected by a TUNEL assay as well as PARP1 cleavage using SDS-PAGE and Western blotting. RESULTS: We identified Ser24 as a phosphorylation site in PP2Ac. The phosphorylation is mediated mainly by classical PKCs (PKCα and PKCß) but not by novel PKCs (PKCδ and PKCε). By replacing the phosphorylated residue with either unphosphorylatable or phosphomimetic residues (S24A and S24E), we found that this phosphorylation event is necessary and sufficient to mediate the PP2A switch, which ultimately induces AKT inactivation, and a robust JNK-dependent apoptosis. CONCLUSION: Our results show that the PP2A switch is induced by PKC-mediated phosphorylation of Ser24-PP2Ac and that this phosphorylation leads to apoptosis upon GqPCR induction of various cells. We propose that this mechanism may provide an unexpected way to treat some cancer types or problems in the endocrine machinery.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Apoptose
5.
Life Sci Alliance ; 7(1)2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37891002

RESUMO

We previously reported that activation of p53 by APR-246 reprograms tumor-associated macrophages to overcome immune checkpoint blockade resistance. Here, we demonstrate that APR-246 and its active moiety, methylene quinuclidinone (MQ) can enhance the immunogenicity of tumor cells directly. MQ treatment of murine B16F10 melanoma cells promoted activation of melanoma-specific CD8+ T cells and increased the efficacy of a tumor cell vaccine using MQ-treated cells even when the B16F10 cells lacked p53. We then designed a novel combination of APR-246 with the TLR-4 agonist, monophosphoryl lipid A, and a CD40 agonist to further enhance these immunogenic effects and demonstrated a significant antitumor response. We propose that the immunogenic effect of MQ can be linked to its thiol-reactive alkylating ability as we observed similar immunogenic effects with the broad-spectrum cysteine-reactive compound, iodoacetamide. Our results thus indicate that combination of APR-246 with immunomodulatory agents may elicit effective antitumor immune response irrespective of the tumor's p53 mutation status.


Assuntos
Linfócitos T CD8-Positivos , Melanoma , Camundongos , Animais , Proteína Supressora de Tumor p53/genética , Antígenos de Neoplasias
6.
Front Bioeng Biotechnol ; 11: 1269246, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37901837

RESUMO

Although the novel root-end filling material containing zirconium oxide (NRFM-Zr) which is hydroxyapatite-based may promote osteoblast differentiation, the molecular mechanism remains unclear. The aim of this study is to investigate it underlying the osteogenic/odontogenic differentiation of human osteosarcoma MG-63 cells induced by NRFM-Zr, compared with calcium silicate-based mineral trioxide aggregate (MTA), and glass ionomer cement (GIC). Firstly, three different types of root filling materials were co-cultured with MG-63 cells, and their cell toxicity, alkaline phosphatase (ALP) activity, and calcium ion concentration were evaluated. Next, gene expression profiling microarray was employed to analyze the impact of the materials on the gene expression profile of MG-63 cells. The results of cell viability revealed that NRFM-Zr group had no significant difference compared to the negative control group. After 5 and 7 days of cultivation, both the NRFM-Zr and MTA groups exhibited significantly higher ALP activity compared to the negative control (p < 0.05). Moreover, the NRFM-Zr group had the highest calcium ion concentration, while the GIC group was the lowest (p < 0.05). Gene expression profiling microarray analysis identified 2915 (NRFM-Zr), 2254 (MTA) and 392 (GIC) differentially expressed genes, respectively. GO functional and KEGG pathway analysis revealed that differentially expressed genes of NRFM-Zr, MTA and GIC participated in 8, 6 and 0 differentiation-related pathways, respectively. Comparing the molecular mechanisms of osteogenic/odontogenic differentiation induced by hydroxyapatite-based NRFM-Zr and calcium silicate-based MTA, it was found that they shared similarities in their molecular mechanisms of promoting osteogenic differentiation. NRFM-Zr primarily promotes differentiation and inhibits cell apoptosis, thereby enhancing osteogenic/odontogenic differentiation of MG-63 cells. Furthermore, the inducing efficacy of NRFM-Zr was found to be superior to MTA.

7.
J Am Soc Nephrol ; 34(11): 1900-1913, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37787447

RESUMO

SIGNIFICANCE STATEMENT: Genome-wide association studies have identified nearly 20 IgA nephropathy susceptibility loci. However, most nonsynonymous coding variants, particularly ones that occur rarely or at a low frequency, have not been well investigated. The authors performed a chip-based association study of IgA nephropathy in 8529 patients with the disorder and 23,224 controls. They identified a rare variant in the gene encoding vascular endothelial growth factor A (VEGFA) that was significantly associated with a two-fold increased risk of IgA nephropathy, which was further confirmed by sequencing analysis. They also identified a novel common variant in PKD1L3 that was significantly associated with lower haptoglobin protein levels. This study, which was well-powered to detect low-frequency variants with moderate to large effect sizes, helps expand our understanding of the genetic basis of IgA nephropathy susceptibility. BACKGROUND: Genome-wide association studies have identified nearly 20 susceptibility loci for IgA nephropathy. However, most nonsynonymous coding variants, particularly those occurring rarely or at a low frequency, have not been well investigated. METHODS: We performed a three-stage exome chip-based association study of coding variants in 8529 patients with IgA nephropathy and 23,224 controls, all of Han Chinese ancestry. Sequencing analysis was conducted to investigate rare coding variants that were not covered by the exome chip. We used molecular dynamic simulation to characterize the effects of mutations of VEGFA on the protein's structure and function. We also explored the relationship between the identified variants and the risk of disease progression. RESULTS: We discovered a novel rare nonsynonymous risk variant in VEGFA (odds ratio, 1.97; 95% confidence interval [95% CI], 1.61 to 2.41; P = 3.61×10 -11 ). Further sequencing of VEGFA revealed twice as many carriers of other rare variants in 2148 cases compared with 2732 controls. We also identified a common nonsynonymous risk variant in PKD1L3 (odds ratio, 1.16; 95% CI, 1.11 to 1.21; P = 1.43×10 -11 ), which was associated with lower haptoglobin protein levels. The rare VEGFA mutation could cause a conformational change and increase the binding affinity of VEGFA to its receptors. Furthermore, this variant was associated with the increased risk of kidney disease progression in IgA nephropathy (hazard ratio, 2.99; 95% CI, 1.09 to 8.21; P = 0.03). CONCLUSIONS: Our study identified two novel risk variants for IgA nephropathy in VEGFA and PKD1L3 and helps expand our understanding of the genetic basis of IgA nephropathy susceptibility.


Assuntos
Estudo de Associação Genômica Ampla , Glomerulonefrite por IGA , Humanos , Fator A de Crescimento do Endotélio Vascular/genética , Predisposição Genética para Doença , Glomerulonefrite por IGA/genética , Haptoglobinas/genética , Progressão da Doença , Polimorfismo de Nucleotídeo Único
8.
Cell Rep ; 42(9): 113023, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37691145

RESUMO

Ferroptosis is a form of regulated cell death with roles in degenerative diseases and cancer. Excessive iron-catalyzed peroxidation of membrane phospholipids, especially those containing the polyunsaturated fatty acid arachidonic acid (AA), is central in driving ferroptosis. Here, we reveal that an understudied Golgi-resident scaffold protein, MMD, promotes susceptibility to ferroptosis in ovarian and renal carcinoma cells in an ACSL4- and MBOAT7-dependent manner. Mechanistically, MMD physically interacts with both ACSL4 and MBOAT7, two enzymes that catalyze sequential steps to incorporate AA in phosphatidylinositol (PI) lipids. Thus, MMD increases the flux of AA into PI, resulting in heightened cellular levels of AA-PI and other AA-containing phospholipid species. This molecular mechanism points to a pro-ferroptotic role for MBOAT7 and AA-PI, with potential therapeutic implications, and reveals that MMD is an important regulator of cellular lipid metabolism.


Assuntos
Ferroptose , Fosfatidilinositóis , Linhagem Celular , Ácidos Graxos Insaturados , Fosfatidilinositóis/metabolismo , Fosfolipídeos/metabolismo , Humanos
9.
PLoS One ; 18(8): e0290307, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37603579

RESUMO

The human microbiome plays a crucial role in human health and is associated with a number of human diseases. Determining microbiome functional roles in human diseases remains a biological challenge due to the high dimensionality of metagenome gene features. However, existing models were limited in providing biological interpretability, where the functional role of microbes in human diseases is unexplored. Here we propose to utilize a neural network-based model incorporating Gene Ontology (GO) relationship network to discover the microbe functionality in human diseases. We use four benchmark datasets, including diabetes, liver cirrhosis, inflammatory bowel disease, and colorectal cancer, to explore the microbe functionality in the human diseases. Our model discovered and visualized the novel candidates' important microbiome genes and their functions by calculating the important score of each gene and GO term in the network. Furthermore, we demonstrate that our model achieves a competitive performance in predicting the disease by comparison with other non-Gene Ontology informed models. The discovered candidates' important microbiome genes and their functions provide novel insights into microbe functional contribution.


Assuntos
Genes Microbianos , Doenças Inflamatórias Intestinais , Humanos , Benchmarking , Ontologia Genética , Doenças Inflamatórias Intestinais/genética , Redes Neurais de Computação
10.
Cancer Inform ; 22: 11769351231190477, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37577174

RESUMO

Hepatocellular carcinoma (HCC) is one of the most fatal cancers in the world. There is an urgent need to understand the molecular background of HCC to facilitate the identification of biomarkers and discover effective therapeutic targets. Published transcriptomic studies have reported a large number of genes that are individually significant for HCC. However, reliable biomarkers remain to be determined. In this study, built on max-linear competing risk factor models, we developed a machine learning analytical framework to analyze transcriptomic data to identify the most miniature set of differentially expressed genes (DEGs). By analyzing 9 public whole-transcriptome datasets (containing 1184 HCC samples and 672 nontumor controls), we identified 5 critical differentially expressed genes (DEGs) (ie, CCDC107, CXCL12, GIGYF1, GMNN, and IFFO1) between HCC and control samples. The classifiers built on these 5 DEGs reached nearly perfect performance in identification of HCC. The performance of the 5 DEGs was further validated in a US Caucasian cohort that we collected (containing 17 HCC with paired nontumor tissue). The conceptual advance of our work lies in modeling gene-gene interactions and correcting batch effect in the analytic framework. The classifiers built on the 5 DEGs demonstrated clear signature patterns for HCC. The results are interpretable, robust, and reproducible across diverse cohorts/populations with various disease etiologies, indicating the 5 DEGs are intrinsic variables that can describe the overall features of HCC at the genomic level. The analytical framework applied in this study may pave a new way for improving transcriptome profiling analysis of human cancers.

11.
Eur Radiol ; 33(12): 9347-9356, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37436509

RESUMO

OBJECTIVE: Based on ultrasound (US) images, this study aimed to detect and quantify calcifications of thyroid nodules, which are regarded as one of the most important features in US diagnosis of thyroid cancer, and to further investigate the value of US calcifications in predicting the risk of lymph node metastasis (LNM) in papillary thyroid cancer (PTC). METHODS: Based on the DeepLabv3+ networks, 2992 thyroid nodules in US images were used to train a model to detect thyroid nodules, of which 998 were used to train a model to detect and quantify calcifications. A total of 225 and 146 thyroid nodules obtained from two centers, respectively, were used to test the performance of these models. A logistic regression method was used to construct the predictive models for LNM in PTCs. RESULTS: Calcifications detected by the network model and experienced radiologists had an agreement degree of above 90%. The novel quantitative parameters of US calcification defined in this study showed a significant difference between PTC patients with and without cervical LNM (p < 0.05). The calcification parameters were beneficial to predicting the LNM risk in PTC patients. The LNM prediction model using these calcification parameters combined with patient age and other US nodular features showed a higher specificity and accuracy than the calcification parameters alone. CONCLUSIONS: Our models not only detect the calcifications automatically, but also have value in predicting cervical LNM risk of PTC patients, thereby making it possible to investigate the relationship between calcifications and highly invasive PTC in detail. CLINICAL RELEVANCE STATEMENT: Due to the high association of US microcalcifications with thyroid cancers, our model will contribute to the differential diagnosis of thyroid nodules in daily practice. KEY POINTS: • We developed an ML-based network model for automatically detecting and quantifying calcifications within thyroid nodules in US images. • Three novel parameters for quantifying US calcifications were defined and verified. • These US calcification parameters showed value in predicting the risk of cervical LNM in PTC patients.


Assuntos
Calcinose , Carcinoma Papilar , Carcinoma , Aprendizado Profundo , Neoplasias da Glândula Tireoide , Nódulo da Glândula Tireoide , Humanos , Nódulo da Glândula Tireoide/diagnóstico por imagem , Nódulo da Glândula Tireoide/patologia , Câncer Papilífero da Tireoide/patologia , Metástase Linfática/patologia , Carcinoma/patologia , Carcinoma Papilar/diagnóstico por imagem , Carcinoma Papilar/patologia , Neoplasias da Glândula Tireoide/patologia , Linfonodos/patologia , Calcinose/complicações , Calcinose/diagnóstico por imagem , Calcinose/patologia , Fatores de Risco , Estudos Retrospectivos
12.
ACS Appl Mater Interfaces ; 15(29): 35043-35051, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37454396

RESUMO

Currently, ultrahigh-nickel layered oxide is one of the most promising cathodes for lithium-ion batteries, with the advantages of high theoretical capacity and low cost. However, some problems in ultrahigh-nickel layered oxides are more serious, such as irreversible structural transformation, particle cracking, and side reactions at the electrode/electrolyte interface, resulting in the fast decay of the discharge capacity and midpoint potential. In this work, La doping is introduced into ultrahigh-nickel layered LiNi0.9Co0.1O2 oxide to improve the cycle stability on both discharge capacity and midpoint potential. As demonstrated, La can be doped successfully into the subsurface of LiNi0.9Co0.1O2 oxide, and the morphology of the oxide microspheres is not changed obviously by La doping. Compared with the pristine sample, the La-doped sample presents improved electrochemical performance, especially good cycle stabilization on both discharge capacity and midpoint potential. In addition, after a long-term cycle, the La-doped sample still maintains a relatively complete spherical morphology. It means that the pillaring effect of La with a large radius is helpful in accommodating the volume change caused by the insertion/extraction of Li ions, thus easing the anisotropic stress accumulation and microcrack growth inside the microspheres of the La-doped sample.

13.
Anal Chim Acta ; 1268: 341330, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37268337

RESUMO

Peptide sequencing is of great significance to fundamental and applied research in the fields such as chemical, biological, medicinal and pharmaceutical sciences. With the rapid development of mass spectrometry and sequencing algorithms, de-novo peptide sequencing using tandem mass spectrometry (MS/MS) has become the main method for determining amino acid sequences of novel and unknown peptides. Advanced algorithms allow the amino acid sequence information to be accurately obtained from MS/MS spectra in short time. In this review, algorithms from exhaustive search to the state-of-art machine learning and neural network for high-throughput and automated de-novo sequencing are introduced and compared. Impacts of datasets on algorithm performance are highlighted. The current limitations and promising direction of de-novo peptide sequencing are also discussed in this review.


Assuntos
Análise de Sequência de Proteína , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Análise de Sequência de Proteína/métodos , Peptídeos/química , Algoritmos , Sequência de Aminoácidos
14.
Food Res Int ; 170: 112990, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37316063

RESUMO

The alginate oligosaccharides (AOS) possess versatile activities (such as antioxidant, anti-inflammatory, antitumor, and immune-regulatory activities) and have been the research topic in marine bioresource utilization fields. The degree of polymerization (DP) and the ß-D-mannuronic acid (M)/α-L-guluronic acid (G)-units ratio strongly affect the functionality of AOS. Therefore, directed preparation of AOS with specific structures is essential for expanding the applications of alginate polysaccharides and has been the research topic in the marine bioresource field. Alginate lyases could efficiently degrade alginate and specifically produce AOS with specific structures. Therefore, enzymatic preparation of AOS with specific structures has drawn increasing attention. Herein, we systematically summarized the current research progress on the structure-function relation of AOS and focuses on the application of the enzymatic properties of alginate lyase to the specific preparation of various types of AOS. At the same time, current challenges and opportunities for AOS applications are presented to guide and improve the preparation and application of AOS in the future.


Assuntos
Alginatos , Oligossacarídeos , Relação Estrutura-Atividade , Antioxidantes , Polimerização
15.
World J Microbiol Biotechnol ; 39(8): 207, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37221433

RESUMO

Alginate oligosaccharides (AOS) made from the degradation of alginate, to some extent, makes up for the poor solubility and bioavailability of alginate as a macromolecular substance and possess several beneficial biological activities that are absent in alginate. These properties include prebiotic, glycolipid regulatory, immunomodulatory, antimicrobial, antioxidant, anti-tumor, promoting plant growth and other activities. Consequently, AOS has significant potential for use in the agricultural, biomedical, and food industries, and has been the focus of research in the field of marine biological resources. This review comprehensively covers methods (physical, chemical, and enzymatic methods) for the production of AOS from alginate. More importantly, this paper reviews recent advances in the biological activity and potentially industrial and therapeutic applications of AOS, providing a reference for future research and applications of AOS.


Assuntos
Agricultura , Alginatos , Antioxidantes , Disponibilidade Biológica , Oligossacarídeos
16.
iScience ; 25(11): 105419, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36388990

RESUMO

Met is an oncogene aberrantly activated in multiple cancers. Therefore, to better understand Met biology and its role in disease we applied the Mammalian Membrane Two-Hybrid (MaMTH) to generate a targeted interactome map of its interactions with human SH2/PTB-domain-containing proteins. We identified thirty interaction partners, including sixteen that were previously unreported. Non-small cell lung cancer (NSCLC)-focused functional characterization of a Met-interacting protein, BLNK, revealed that BLNK is a positive regulator of Met signaling, and modulates localization, including ligand-dependent trafficking of Met in NSCLC cell lines. Furthermore, the interaction between Met and GRB2 is increased in the presence of BLNK, and the constitutive interaction between BLNK and GRB2 is increased in the presence of active Met. Tumor phenotypical assays uncovered roles for BLNK in anchorage-independent growth and chemotaxis of NSCLC cell lines. Cumulatively, this study provides a Met-interactome and delineates a role for BLNK in regulating Met biology in NSCLC context.

17.
J Craniofac Surg ; 33(7): e736-e738, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35776922

RESUMO

ABSTRACT: The precise movement of the maxilla is particularly important for orthognathic surgery, especially for patients with maxillary segmentation. In this preliminary study, the authors present a new tooth bone combined with a supporting osteotomy guide and positioning guide to guide the osteotomy and reduction of the maxilla. Through our preoperative simulation and postoperative image fusion, the authors found that the overlapping area is more than 90%. According to compare of the virtual plans and the postoperative results based on distances from the maxillary land- marks to the horizontal plane, sagittal plane, and coronal plane, the surgical error was about 2mm. Our T-shaped guide provides a reliable method for patients with maxillary segmental osteotomy, which may be a useful alternative to the intermediate.


Assuntos
Cirurgia Ortognática , Procedimentos Cirúrgicos Ortognáticos , Placas Ósseas , Humanos , Imageamento Tridimensional/métodos , Maxila/cirurgia , Procedimentos Cirúrgicos Ortognáticos/métodos , Osteotomia de Le Fort/métodos
19.
Nat Commun ; 13(1): 3716, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35778399

RESUMO

The COVID-19 pandemic triggered the development of numerous diagnostic tools to monitor infection and to determine immune response. Although assays to measure binding antibodies against SARS-CoV-2 are widely available, more specific tests measuring neutralization activities of antibodies are immediately needed to quantify the extent and duration of protection that results from infection or vaccination. We previously developed a 'Serological Assay based on a Tri-part split-NanoLuc® (SATiN)' to detect antibodies that bind to the spike (S) protein of SARS-CoV-2. Here, we expand on our previous work and describe a reconfigured version of the SATiN assay, called Neutralization SATiN (Neu-SATiN), which measures neutralization activity of antibodies directly from convalescent or vaccinated sera. The results obtained with our assay and other neutralization assays are comparable but with significantly shorter preparation and run time for Neu-SATiN. As the assay is modular, we further demonstrate that Neu-SATiN enables rapid assessment of the effectiveness of vaccines and level of protection against existing SARS-CoV-2 variants of concern and can therefore be readily adapted for emerging variants.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , Humanos , Luciferases , Glicoproteínas de Membrana/metabolismo , Testes de Neutralização , Pandemias , Glicoproteína da Espícula de Coronavírus , Proteínas do Envelope Viral
20.
Front Pharmacol ; 13: 855626, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35656311

RESUMO

Resibufogenin (RB) is a major active ingredient in the traditional Chinese medicine Chansu and has garnered considerable attention for its efficacy in the treatment of cancer. However, the anticancer effects and underlying mechanisms of RB on glioblastoma (GBM) remain unknown. Here, we found that RB induced G2/M phase arrest and inhibited invasion in a primary GBM cell line, P3#GBM, and two GBM cell lines, U251 and A172. Subsequently, we demonstrated that RB-induced G2/M phase arrest occurred through downregulation of CDC25C and upregulation of p21, which was caused by activation of the MAPK/ERK pathway, and that RB inhibited GBM invasion by elevating intercellular Ca2+ to suppress the Src/FAK/Paxillin focal adhesion pathway. Intriguingly, we confirmed that upon RB binding to ATP1A1, Na+-K+-ATPase was activated as a receptor and then triggered the intracellular MAPK/ERK pathway and Ca2+-mediated Src/FAK/Paxillin focal adhesion pathway, which led to G2/M phase arrest and inhibited the invasion of GBM cells. Taken together, our findings reveal the antitumor mechanism of RB by targeting the ATP1A1 signaling cascade and two key signaling pathways and highlight the potential of RB as a new class of promising anticancer agents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA