Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Cancer ; 22(1): 125, 2023 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-37543582

RESUMO

Hairy cell leukemia (HCL) is a B-lymphoma induced by BRAF(V600E) mutation. However, introducing BRAF(V600E) in B-lymphocytes fails to induce hematological malignancy, suggesting that BRAF(V600E) needs concurrent mutations to drive HCL ontogeny. To resolve this issue, here we surveyed human HCL genomic sequencing data. Together with previous reports, we speculated that the tumor suppressor TP53, P27, or PTEN restrict the oncogenicity of BRAF(V600E) in B-lymphocytes, and therefore that their loss-of-function facilitates BRAF(V600E)-driven HCL ontogeny. Using genetically modified mouse models, we demonstrate that indeed BRAF(V600E)KI together with Trp53KO or pTENKO in B-lymphocytes induces chronic lymphoma with pathological features of human HCL. To further understand the cellular programs essential for HCL ontogeny, we profiled the gene expression of leukemic cells isolated from BRAF(V600E)KI and Trp53KO or pTENKO mice, and found that they had similar but different gene expression signatures that resemble that of M2 or M1 macrophages. In addition, we examined the expression signature of transcription factors/regulators required for germinal center reaction and memory B cell versus plasma cell differentiation in these leukemic cells and found that most transcription factors/regulators essential for these programs were severely inhibited, illustrating why hairy cells are arrested at a transitional stage between activated B cells and memory B cells. Together, our study has uncovered concurrent mutations required for HCL ontogeny, revealed the B cell origin of hairy cells and investigated the molecular basis underlying the unique pathological features of the disease, with important implications for HCL research and treatment.


Assuntos
Leucemia de Células Pilosas , Animais , Humanos , Camundongos , Linfócitos B/metabolismo , Leucemia de Células Pilosas/genética , Leucemia de Células Pilosas/metabolismo , Leucemia de Células Pilosas/patologia , Mutação , Proteínas Proto-Oncogênicas B-raf , Fatores de Transcrição/genética
2.
Sci Adv ; 7(24)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34108213

RESUMO

Although targeting BRAF mutants with RAF inhibitors has achieved promising outcomes in cancer therapy, drug resistance remains a remarkable challenge, and underlying molecular mechanisms are not fully understood. Here, we characterized a previously unknown group of oncogenic BRAF mutants with in-frame insertions (LLRins506 or VLRins506) of αC-ß4 loop. Using structure modeling and molecular dynamics simulation, we found that these insertions formed a large hydrophobic network that stabilizes R-spine and thus triggers the catalytic activity of BRAF. Furthermore, these insertions disrupted BRAF dimer interface and impaired dimerization. Unlike BRAF(V600E), these BRAF mutants with low dimer affinity were strongly resistant to all RAF inhibitors in clinic or clinical trials, which arises from their stabilized R-spines. As predicted by molecular docking, the stabilized R-spines in other BRAF mutants also conferred drug resistance. Together, our data indicated that the stability of R-spine but not dimer affinity determines the RAF inhibitor resistance of oncogenic BRAF mutants.

3.
Cancer Drug Resist ; 4(3): 665-683, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35582307

RESUMO

Hyperactive RAS/RAF/MEK/ERK signaling has a well-defined role in cancer biology. Targeting this pathway results in complete or partial regression of most cancers. In recent years, cancer genomic studies have revealed that genetic alterations that aberrantly activate the RAS/RAF/MEK/ERK signaling mainly occur on RAF or upstream, which motivated the extensive development of RAF inhibitors for cancer therapy. Currently, the first-generation RAF inhibitors have been approved for treating late-stage cancers with BRAF(V600E) mutations. Although these inhibitors have achieved promising outcomes in clinical treatments, their efficacy is abolished by quick-rising drug resistance. Moreover, cancers with hyperactive RAS exhibit intrinsic resistance to these drugs. To resolve these problems, the second-generation RAF inhibitors have been designed and are undergoing clinical evaluations. Here, we summarize the recent findings from mechanistic studies on RAF inhibitor resistance and discuss the critical issues in the development of next-generation RAF inhibitors with better therapeutic index, which may provide insights for improving targeted cancer therapy with RAF inhibitors.

4.
J Hematol Oncol ; 13(1): 113, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32807225

RESUMO

Cancer is characterized as a complex disease caused by coordinated alterations of multiple signaling pathways. The Ras/RAF/MEK/ERK (MAPK) signaling is one of the best-defined pathways in cancer biology, and its hyperactivation is responsible for over 40% human cancer cases. To drive carcinogenesis, this signaling promotes cellular overgrowth by turning on proliferative genes, and simultaneously enables cells to overcome metabolic stress by inhibiting AMPK signaling, a key singular node of cellular metabolism. Recent studies have shown that AMPK signaling can also reversibly regulate hyperactive MAPK signaling in cancer cells by phosphorylating its key components, RAF/KSR family kinases, which affects not only carcinogenesis but also the outcomes of targeted cancer therapies against the MAPK signaling. In this review, we will summarize the current proceedings of how MAPK-AMPK signalings interplay with each other in cancer biology, as well as its implications in clinic cancer treatment with MAPK inhibition and AMPK modulators, and discuss the exploitation of combinatory therapies targeting both MAPK and AMPK as a novel therapeutic intervention.


Assuntos
Adenilato Quinase/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Terapia de Alvo Molecular , Proteínas de Neoplasias/fisiologia , Neoplasias/enzimologia , Aminoácidos/metabolismo , Antineoplásicos/uso terapêutico , Autofagia , Diferenciação Celular/fisiologia , Divisão Celular/fisiologia , Ensaios Clínicos como Assunto , Sinergismo Farmacológico , Metabolismo Energético , Ativação Enzimática , Homeostase , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas de Neoplasias/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Fosforilação , Inibidores de Proteínas Quinases/uso terapêutico , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Quinases raf/antagonistas & inibidores , Quinases raf/genética , Quinases raf/fisiologia
5.
J Vis Exp ; (149)2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31380842

RESUMO

The rapidly accelerated fibrosarcoma (RAF) family kinases play a central role in cell biology and their dysfunction leads to cancers and developmental disorders. A characterization of disease-related RAF mutants will help us select appropriate therapeutic strategies for treating these diseases. Recent studies have shown that RAF family kinases have both catalytic and allosteric activities, which are tightly regulated by dimerization. Here, we constructed a set of practical and feasible methods to determine the catalytic and allosteric activities and the relative dimer affinity/stability of RAF family kinases and their mutants. Firstly, we amended the classical in vitro kinase assay by reducing the detergent concentration in buffers, utilizing a gentle quick wash procedure, and employing a glutathione S-transferase (GST) fusion to prevent RAF dimers from dissociating during purification. This enables us to measure the catalytic activity of constitutively active RAF mutants appropriately. Secondly, we developed a novel RAF co-activation assay to evaluate the allosteric activity of kinase-dead RAF mutants by using N-terminal truncated RAF proteins, eliminating the requirement of active Ras in current protocols and thereby achieving a higher sensitivity. Lastly, we generated a unique complementary split luciferase assay to quantitatively measure the relative dimer affinity/stability of various RAF mutants, which is more reliable and sensitive compared to the traditional co-immunoprecipitation assay. In summary, these methods have the following advantages: (1) user-friendly; (2) able to carry out effectively without advanced equipment; (3) cost-effective; (4) highly sensitive and reproducible.


Assuntos
Proteínas Serina-Treonina Quinases/metabolismo , Quinases raf/metabolismo , Animais , Humanos , Mutação
6.
Sci Signal ; 11(554)2018 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-30377225

RESUMO

RAS-RAF-MEK-ERK signaling has a well-defined role in cancer biology. Although aberrant pathway activation occurs mostly upstream of the kinase MEK, mutations in MEK are prevalent in some cancer subsets. Here, we found that cancer-related, activating mutations in MEK can be classified into two groups: those that relieve inhibitory interactions with the helix A region and those that are in-frame deletions of the ß3-αC loop, which enhance MEK1 homodimerization. The former, helix A-associated mutants, are inhibited by traditional MEK inhibitors. However, we found that the increased homodimerization associated with the loop-deletion mutants promoted intradimer cross-phosphorylation of the activation loop and conferred differential resistance to MEK inhibitors both in vitro and in vivo. MEK1 dimerization was required both for its activation by the kinase RAF and for its catalytic activity toward the kinase ERK. Our findings not only identify a previously unknown group of MEK mutants and provide insight into some key steps in RAF-MEK-ERK activation but also have implications for the design of therapies targeting RAS-ERK signaling in cancers.


Assuntos
Carcinogênese , MAP Quinase Quinase 1/genética , Sistema de Sinalização das MAP Quinases , Neoplasias/genética , Animais , Transformação Celular Neoplásica , Fibroblastos/metabolismo , Células HEK293 , Humanos , MAP Quinase Quinase 1/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Transplante de Neoplasias , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Multimerização Proteica , Deleção de Sequência , Transdução de Sinais
7.
J Biol Chem ; 293(37): 14276-14284, 2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-30030377

RESUMO

The dimerization-driven paradoxical activation of RAF proto-oncogene Ser/Thr kinase (RAF) is the predominant cause of drug resistance and toxicity in cancer therapies with RAF inhibitors. The scaffold protein 14-3-3, which binds to the RAF C terminus, is essential for RAF activation under physiological conditions, but the molecular basis is unclear. Here we investigated whether and how 14-3-3 regulates the dimerization-driven transactivation of the RAF isoform CRAF by RAF inhibitors and affects drug resistance and toxicity by virtue of the dominant role of CRAF in these processes. We demonstrated that 14-3-3 enhances the dimerization-driven transactivation of CRAF by stabilizing CRAF dimers. Further, we identified AMP-activated protein kinase (AMPK) and CRAF itself as two putative kinases that redundantly phosphorylate CRAF's C terminus and thereby control its association with 14-3-3. Next, we determined whether the combinatory inhibition of AMPK and CRAF could overcome the paradoxical effect of RAF inhibitors. We found that the AMPK inhibitor (AMPKi) not only blocked the RAF inhibitor-driven paradoxical activation of ERK signaling and cellular overgrowth in Ras-mutated cancer cells by blocking phosphorylation of Ser-621 in CRAF but also reduced the formation of drug-resistant clones of BRAFV600E-mutated cancer cells. Last, we investigated whether 14-3-3 binding to the C terminus of CRAF is required for CRAF catalytic activity and observed that it was dispensable in vivo Altogether, our study unravels the molecular mechanism by which 14-3-3 regulates dimerization-driven RAF activation and identified AMPKi as a potential agent to counteract drug resistance and adverse effects of RAF inhibitors in cancer therapies.


Assuntos
Adenilato Quinase/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-raf/antagonistas & inibidores , Serina/metabolismo , Proteínas 14-3-3/metabolismo , Linhagem Celular Tumoral , Dimerização , Células HEK293 , Humanos , Fosforilação , Ligação Proteica , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-raf/química , Proteínas Proto-Oncogênicas c-raf/metabolismo , Serina/química , Transdução de Sinais
8.
Oncogene ; 37(43): 5719-5734, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29930381

RESUMO

Although extensively studied for three decades, the molecular mechanisms that regulate the RAF/MEK/ERK kinase cascade remain ambiguous. Recent studies identified the dimerization of RAF as a key event in the activation of this cascade. Here, we show that in-frame deletions in the ß3-αC loop activate ARAF as well as BRAF and other oncogenic kinases by enforcing homodimerization. By characterizing these RAF mutants, we find that ARAF has less allosteric and catalytic activity than the other two RAF isoforms, which arises from its non-canonical APE motif. Further, these RAF mutants exhibit a strong oncogenic potential, and a differential inhibitor resistance that correlates with their dimer affinity. Using these unique mutants, we demonstrate that active RAFs, including the BRAF(V600E) mutant, phosphorylate MEK in a dimer-dependent manner. This study characterizes a special category of oncogenic kinase mutations, and elucidates the molecular basis that underlies the differential ability of RAF isoforms to stimulate MEK-ERK pathway. Further, this study reveals a unique catalytic feature of RAF family kinases that can be exploited to control their activities for cancer therapies.


Assuntos
Sistema de Sinalização das MAP Quinases , Mutação , Neoplasias , Multimerização Proteica , Quinases raf/metabolismo , Animais , Catálise , Linhagem Celular Tumoral , Camundongos , Camundongos Knockout , Neoplasias/enzimologia , Neoplasias/genética , Neoplasias/patologia , Quinases raf/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA