Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Negl Trop Dis ; 18(3): e0011976, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38527059

RESUMO

BACKGROUND: Acanthamoeba keratitis (AK) is a corneal sight-threatening infection caused by the free-living amoebae of the genus Acanthamoeba. Early and appropriate treatment significantly impacts visual outcomes. Mucoadhesive polymers such as chitosan are a potential strategy to prolong the residence time and bioavailability of the encapsulated drugs in the cornea. Regarding the recent administration of miltefosine (MF) for treating resistant AK, in the present study, we synthesized miltefosine-loaded chitosan nanoparticles (MF-CS-NPs) and evaluated them against Acanthamoeba. METHODOLOGY/PRINCIPAL FINDINGS: Chitosan nanoparticles (CNPs) were prepared using the ionic gelation method with negatively charged tripolyphosphate (TPP). The zeta-potential (ZP) and the particle size of MF-CS-NPs were 21.8±3.2 mV and 46.61±18.16 nm, respectively. The release profile of MF-CS-NPs indicated linearity with sustained drug release. The cytotoxicity of MF-CS-NPs on the Vero cell line was 2.67 and 1.64 times lower than free MF at 24 and 48 hours. This formulation exhibited no hemolytic activity in vitro and ocular irritation in rabbit eyes. The IC50 of MF-CS-NPs showed a significant reduction by 2.06 and 1.69-fold in trophozoites at 24 and 48 hours compared to free MF. Also, the MF-CS-NPs IC50 in the cysts form was slightly decreased by 1.26 and 1.21-fold at 24 and 48 hours compared to free MF. CONCLUSIONS: The MF-CS-NPs were more effective against the trophozoites and cysts than free MF. The nano-chitosan formulation was more effective on trophozoites than the cysts form. MF-CS-NPs reduced toxicity and improved the amoebicidal effect of MF. Nano-chitosan could be an ideal carrier that decreases the cytotoxicity of miltefosine. Further analysis in animal settings is needed to evaluate this nano-formulation for clinical ocular drug delivery.


Assuntos
Acanthamoeba , Quitosana , Nanopartículas , Fosforilcolina/análogos & derivados , Animais , Coelhos , Portadores de Fármacos , Quitosana/farmacologia
2.
Protein J ; 42(1): 37-54, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36683078

RESUMO

Recombinant human keratinocyte growth factor (rhKGF) is a highly aggregation-prone therapeutic protein. The present study aimed to reduce aggregation propensity of rhKGF by engineering the aggregation hotspots. Initially, 21 mutants were designed based on the previously-identified aggregation-prone regions (APRs) and then four of them including mutants No. 4 (L91K, I119K), 7 (V13S, L91K), 14 (L91D, I119D), and 21 (A51E) were selected based on molecular dynamics (MD) simulations for further experimental studies. The recombinantly produced rhKGF and mutants were analyzed regarding secondary structure, thermal stability, aggregation propensity, and biological activity. Far-UV CD spectroscopy showed that the mutants have similar secondary structure with rhKGF. A51E mutant showed enhanced stability and decreased monomer loss under heat stress suggesting its reduced aggregation propensity compared to rhKGF. Mutant No. 14 showed higher stability and less aggregation tendency than mutant No. 4 indicating that only mutations decreasing pI of rhKGF are effective in reducing its aggregation tendency. All of the mutants were at least as potent as rhKGF in stimulating proliferation of MCF-7 epithelial cells. Our results identified A51E as an equally potent, more stable, and less aggregation-prone analog of rhKGF which could be a promising alternative drug candidate for the commercially available rhKGF (Palifermin).


Assuntos
Fator 7 de Crescimento de Fibroblastos , Simulação de Dinâmica Molecular , Humanos
3.
Exp Parasitol ; 246: 108459, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36596336

RESUMO

Cutaneous leishmaniasis (CL) is one of the most important infectious parasitic diseases in the world caused by the Leishmania parasite. In recent decades, the presence of a virus from the Totiviridae family has been proven in some Leishmania species. Although the existence of LRV2 in the Old world Leishmania species has been confirmed, almost no studies have been done to determine the potential impact of LRV2 on the immunopathogenicity of the Leishmania parasite. In this preliminary study, we measured the expression of target genes, including Glycoprotein 63 (gp63), Heat Shock Protein 70 (hsp70), Cysteine Protease b (cpb), Interleukin 1 beta (IL-1ß), IL8 and IL-12 in LRV2 positive Leishmania major strain (LRV2+L. major) and LRV2 negative L. major strain (LRV2-L. major). We exposed THP-1, a human leukemia monocytic cell line, to promastigotes of both strains. After the initial infection, RNA was extracted at different time points, and the relative gene expression was determined using a real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Findings showed that the presence of LRV2 in L. major was able to increase the expression of gp63, hsp70, and cpb genes; also, we observed lower levels of expression in cytokine genes of IL-1ß, IL-8, IL-12 in the presence of LRV2+, which are critical factors in the host's immune response against leishmaniasis. These changes could suggest that the presence of LRV2 in L. major parasite may change the outcome of the disease and increase the probability of Leishmania survival; nevertheless, further studies are needed to confirm our results.


Assuntos
Leishmania major , Leishmaniose Cutânea , Vírus de RNA , Humanos , Citocinas/genética , Expressão Gênica , Interleucina-12/genética , Leishmania major/genética , Leishmaniose Cutânea/genética , Leishmaniose Cutânea/microbiologia , Macrófagos/microbiologia , Vírus de RNA/patogenicidade , Fatores de Virulência/genética
4.
J Cell Mol Med ; 26(23): 5929-5942, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36412036

RESUMO

Different growth factors can regulate stem cell differentiation. We used keratinocyte growth factor (KGF) to direct adipose-derived stem cells (ASCs) differentiation into keratinocytes. To enhance KGF bioavailability, we targeted KGF for collagen by fusing it to collagen-binding domain from Vibrio mimicus metalloprotease (vibrioCBD-KGF). KGF and vibrioCBD-KGF were expressed in Escherichia coli and purified to homogeneity. Both proteins displayed comparable activities in stimulating proliferation of HEK-293 and MCF-7 cells. vibrioCBD-KGF demonstrated enhanced collagen-binding affinity in immunofluorescence and ELISA. KGF and vibrioCBD-KGF at different concentrations (2, 10, and 20 ng/ml) were applied for 21 days on ASCs cultured on collagen-coated plates. Keratinocyte differentiation was assessed based on morphological changes, the expression of keratinocyte markers (Keratin-10 and Involucrin), and stem cell markers (Collagen-I and Vimentin) by real-time PCR or immunofluorescence. Our results indicated that the expression of keratinocyte markers was substantially increased at all concentrations of vibrioCBD-KGF, while it was observed for KGF only at 20 ng/ml. Immunofluorescence staining approved this finding. Moreover, down-regulation of Collagen-I, an indicator of differentiation commitment, was more significant in samples treated with vibrioCBD-KGF. The present study showed that vibrioCBD-KGF is more potent in inducing the ASCs differentiation into keratinocytes compared to KGF. Our results have important implications for effective skin regeneration using collagen-based biomaterials.


Assuntos
Diferenciação Celular , Fator 7 de Crescimento de Fibroblastos , Queratinócitos , Células-Tronco , Humanos , Colágeno , Colágeno Tipo I/genética , Fator 7 de Crescimento de Fibroblastos/farmacologia , Células HEK293 , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA