Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 9700, 2024 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678148

RESUMO

Ocular abnormal angiogenesis and edema are featured in several ocular diseases. S1P signaling via S1P1 likely is part of the negative feedback mechanism necessary to maintain vascular health. In this study, we conducted pharmacological experiments to determine whether ASP4058, a sphingosine 1-phosphate receptor 1/5 (S1P1/5) agonist, is useful in abnormal vascular pathology in the eye. First, human retinal microvascular endothelial cells (HRMECs) were examined using vascular endothelial growth factor (VEGF)-induced cell proliferation and hyperpermeability. ASP4058 showed high affinity and inhibited VEGF-induced proliferation and hyperpermeability of HRMECs. Furthermore, S1P1 expression and localization changes were examined in the murine laser-induced choroidal neovascularization (CNV) model, a mouse model of exudative age-related macular degeneration, and the efficacy of ASP4058 was verified. In the CNV model mice, S1P1 tended to decrease in expression immediately after laser irradiation and colocalized with endothelial cells and Müller glial cells. Oral administration of ASP4058 also suppressed vascular hyperpermeability and CNV, and the effect was comparable to that of the intravitreal administration of aflibercept, an anti-VEGF drug. Next, efficacy was also examined in a retinal vein occlusion (RVO) model in which retinal vascular permeability was increased. ASP4058 dose-dependently suppressed the intraretinal edema. In addition, it suppressed the expansion of the perfusion area observed in the RVO model. ASP4058 also suppressed the production of VEGF in the eye. Collectively, ASP4058 can be a potential therapeutic agent that normalizes abnormal vascular pathology, such as age-related macular degeneration and RVO, through its direct action on endothelial cells.


Assuntos
Neovascularização de Coroide , Modelos Animais de Doenças , Animais , Humanos , Neovascularização de Coroide/tratamento farmacológico , Neovascularização de Coroide/metabolismo , Neovascularização de Coroide/patologia , Camundongos , Receptores de Esfingosina-1-Fosfato/metabolismo , Receptores de Esfingosina-1-Fosfato/agonistas , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proliferação de Células/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Receptores de Lisoesfingolipídeo/agonistas , Receptores de Lisoesfingolipídeo/metabolismo , Masculino
2.
Arterioscler Thromb Vasc Biol ; 43(6): 927-942, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37078291

RESUMO

BACKGROUND: Endothelial cell activation is tightly controlled by the balance between VEGF (vascular endothelial cell growth factor) and Notch signaling pathway. VEGF destabilizes blood vessels and promotes neovascularization, which are common features of sight-threatening ocular vascular disorders. Here, we show that BCL6B (B-cell CLL/lymphoma 6 member B protein), also known as BAZF, ZBTB28, and ZNF62, plays a pivotal role in the development of retinal edema and neovascularization. METHODS: The pathophysiological physiological role of BCL6B was investigated in cellular and animal models mimicking 2 pathological conditions: retinal vein occlusion and choroidal neovascularization. An in vitro experimental system was used in which human retinal microvascular endothelial cells were supplemented with VEGF. Choroidal neovascularization cynomolgus monkey model was generated to investigate the involvement of BCL6B in the pathogenesis. Mice lacking BCL6B or treated with BCL6B-targeting small-interfering ribose nucleic acid were examined for histological and molecular phenotypes. RESULTS: In retinal endothelial cells, the BCL6B expression level was increased by VEGF. BCL6B-deficient endothelial cells showed Notch signal activation and attenuated cord formation via blockage of the VEGF-VEGFR2 signaling pathway. Optical coherence tomography images showed that choroidal neovascularization lesions were decreased by BCL6B-targeting small-interfering ribose nucleic acid. Although BCL6B mRNA expression was significantly increased in the retina, BCL6B-targeting small-interfering ribose nucleic acid suppressed ocular edema in the neuroretina. The increase in proangiogenic cytokines and breakdown of the inner blood-retinal barrier were abrogated in BCL6B knockout (KO) mice via Notch transcriptional activation by CBF1 (C promotor-binding factor 1) and its activator, the NICD (notch intracellular domain). Immunostaining showed that Müller cell activation, a source of VEGF, was diminished in BCL6B-KO retinas. CONCLUSIONS: These data indicate that BCL6B may be a novel therapeutic target for ocular vascular diseases characterized by ocular neovascularization and edema.


Assuntos
Neovascularização de Coroide , Ácidos Nucleicos , Neovascularização Retiniana , Doenças Vasculares , Animais , Humanos , Camundongos , Neovascularização de Coroide/genética , Neovascularização de Coroide/metabolismo , Células Endoteliais/metabolismo , Macaca fascicularis/metabolismo , Ácidos Nucleicos/metabolismo , Ácidos Nucleicos/uso terapêutico , Neovascularização Retiniana/genética , Neovascularização Retiniana/metabolismo , Ribose/metabolismo , Ribose/uso terapêutico , Doenças Vasculares/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
3.
Mol Vis ; 29: 188-196, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38222457

RESUMO

Purpose: To investigate the therapeutic effects of eye drops, namely, timolol maleate, a ß-adrenergic receptor antagonist, and latanoprost, a prostaglandin F2α analog, on retinal edema in a murine retinal vein occlusion (RVO) model. Methods: An RVO model was established using laser-induced RVO in mice, which were administered timolol maleate and latanoprost eye drops several times after venous occlusion. Subsequently, the thickness of the inner nuclear layer (INL) and the expression levels of such genes as Vegf and Atf4, which are stress markers of the endoplasmic reticulum, were examined. Primary human cultured retinal microvascular endothelial cells (HRMECs) were treated with timolol under hypoxic conditions, after which the gene expression pattern was investigated. Importantly, an integrated stress response inhibitor (ISRIB) was used in the RVO model, he known ISRIB, which suppresses the expression of ATF4 in retinal edema. Results: Increased INL thickness was suppressed by timolol eye drops, as were the expressions of Vegf and Atf4, in the RVO model. However, latanoprost eye drops did not induce any change in INL thickness. In HRMECs, hypoxic stress and serum deprivation increased the Vegf and Atf4 expressions; in response, treatment with timolol suppressed the Vegf expression. Furthermore, the ISRIB decreased the Vegf expression pattern and edema formation, which are associated with RVO. Conclusions: These results indicate that timolol eye drops may be a potential option for RVO treatment.


Assuntos
Papiledema , Oclusão da Veia Retiniana , Masculino , Humanos , Camundongos , Animais , Timolol/farmacologia , Timolol/uso terapêutico , Timolol/metabolismo , Oclusão da Veia Retiniana/complicações , Oclusão da Veia Retiniana/tratamento farmacológico , Oclusão da Veia Retiniana/metabolismo , Soluções Oftálmicas/uso terapêutico , Latanoprosta/farmacologia , Latanoprosta/metabolismo , Latanoprosta/uso terapêutico , Papiledema/tratamento farmacológico , Células Endoteliais/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Edema/complicações
4.
FASEB J ; 36(6): e22323, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35485981

RESUMO

Neovascular glaucoma (NVG) is caused by the formation of new blood vessels in the angle, iris, and cornea in retinal ischemic disease, such as proliferative diabetic retinopathy (PDR) and retinal vein occlusion (RVO), which can reduce the visual acuity. However, the pathophysiological symptoms of NVG are still not well understood because there is no model for the formation of NVG in the angle, iris, and cornea. The aim of this study was to investigate the involvement of NVG during ischemic disease, in a murine model of retinal ischemia. We evaluated the changes of the intraocular pressure (IOP) and pathological symptoms in the anterior eye segment and retina in this model, and the changes in the RNA or protein expression of vascular endothelial growth factor (VEGF) and fibrosis-related factors were analyzed in the retina and cornea by quantitative real-time polymerase chain reaction or western blot, respectively. Furthermore, we examined the changes in IOP after intravitreal injection of an anti-VEGF antibody. First, NVG formed in the retinal ischemic murine model, and the IOP was elevated in mice with NVG formation. Interestingly, VEGF expression was decreased in the retina but increased in the cornea in the murine model of NVG. On the other hand, fibrosis-related factors were increased in the retina and also significantly increased in the cornea in NVG. Moreover, the administration of anti-VEGF antibody immediately after vessel occlusion suppressed the increase in IOP, but administration at 7 days after vessel occlusion accelerated the increase in IOP. These findings suggest that the formation of NVG may be correlated with the pathological symptoms of retinal ischemic disease, via changes in VEGF and fibrosis-related factor expression.


Assuntos
Glaucoma Neovascular , Doenças Retinianas , Animais , Segmento Anterior do Olho/irrigação sanguínea , Modelos Animais de Doenças , Fibrose , Glaucoma Neovascular/diagnóstico , Glaucoma Neovascular/etiologia , Camundongos , Retina , Fator A de Crescimento do Endotélio Vascular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA