Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Toxicol Sci ; 47(12): 539-546, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36450498

RESUMO

Organobismuth compounds, i.e., organic-inorganic hybrid molecules composed of an organic structure and bismuth metal, have been reported to induce cytotoxicity in cancer cells; however, the target proteins associated with this cytotoxicity have not been elucidated. Herein, we investigated the inhibitory effect of five organobismuth compounds on human glyoxalase I (hGLO I), a promising target candidate for cancer therapy. Among these compounds, triphenylbismuth dichloride (Bi-05) exerted a strong inhibitory effect on hGLO I. Indeed, Bi-05 inhibited hGLO I in a dose-dependent manner with an IC50 value of 0.18 µM. Bi-05 also induced cytotoxicity in human leukemia HL-60 cells and human lung cancer NCI-H522 cells, both of which exhibit high expression levels of GLO I. However, the hGLO I-inhibiting and cytotoxic effects of Bi-05 disappeared when the bismuth atom was replaced with an antimony or phosphorus atom. Bismuth(III) nitrate had little inhibitory effect on hGLO I activity and only slightly reduced the viability of cancer cells. In the culture medium of Bi-05-treated HL-60 cells, the concentration of the GLO I substrate methylglyoxal was markedly elevated. In addition, Bi-05 treatment more strongly inhibited human lung cancer NCI-H522 cell (exhibiting high GLO I expression) proliferation than human lung cancer NCI-H460 cell (exhibiting low GLO I expression) proliferation. Furthermore, the cytotoxicity of Bi-05 was significantly decreased by pre- and co-treatment with the methylglyoxal scavengers N-acetyl-L-cysteine and aminoguanidine. Overall, these results suggest that Bi-05 treatment leads to the accumulation of methylglyoxal via GLO I inhibition, resulting in cytotoxic effects in cancer cells.


Assuntos
Lactoilglutationa Liase , Neoplasias Pulmonares , Humanos , Aldeído Pirúvico/toxicidade , Bismuto , Células HL-60
2.
Int J Mol Sci ; 22(19)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34638861

RESUMO

Among organic-inorganic hybrid molecules consisting of organic structure(s) and metal(s), only few studies are available on the cytotoxicity of nucleophilic molecules. In the present study, we investigated the cytotoxicity of a nucleophilic organotellurium compound, diphenyl ditelluride (DPDTe), using a cell culture system. DPDTe exhibited strong cytotoxicity against vascular endothelial cells and fibroblasts along with high intracellular accumulation but showed no cytotoxicity and had less accumulation in vascular smooth muscle cells and renal epithelial cells. The cytotoxicity of DPDTe decreased when intramolecular tellurium atoms were replaced with selenium or sulfur atoms. Electronic state analysis revealed that the electron density between tellurium atoms in DPDTe was much lower than those between selenium atoms of diphenyl diselenide and sulfur atoms of diphenyl disulfide. Moreover, diphenyl telluride did not accumulate and exhibit cytotoxicity. The cytotoxicity of DPDTe was also affected by substitution. p-Dimethoxy-DPDTe showed higher cytotoxicity, but p-dichloro-DPDTe and p-methyl-DPDTe showed lower cytotoxicity than that of DPDTe. The subcellular distribution of the compounds revealed that the compounds with stronger cytotoxicity showed higher accumulation rates in the mitochondria. Our findings suggest that the electronic state of tellurium atoms in DPDTe play an important role in accumulation and distribution of DPDTe in cultured cells. The present study supports the hypothesis that nucleophilic organometallic compounds, as well as electrophilic organometallic compounds, exhibit cytotoxicity by particular mechanisms.


Assuntos
Derivados de Benzeno/farmacologia , Células Endoteliais/efeitos dos fármacos , Compostos Organometálicos/farmacologia , Compostos Organosselênicos/farmacologia , Telúrio/farmacologia , Animais , Derivados de Benzeno/química , Derivados de Benzeno/metabolismo , Bovinos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Células LLC-PK1 , Modelos Químicos , Estrutura Molecular , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Compostos Organometálicos/química , Compostos Organometálicos/metabolismo , Compostos Organosselênicos/química , Compostos Organosselênicos/metabolismo , Suínos , Telúrio/química
3.
Molecules ; 26(1)2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33406769

RESUMO

The expectation that antimony (Sb) compounds should display phosphorescence emissions based on the "heavy element effect" prompted our interest in the introduction of antimony to a biaryl as the bridging atom in a fused heterole system. Herein, the synthesis, molecular structures, and optical properties of novel benzene-fused heteroacenes containing antimony or arsenic atoms are described. The stiboles and arsole were prepared by the condensation of dibromo(phenyl)stibane or dichloro(phenyl)arsine with dilithium intermediates derived from the corresponding dibromo compounds. Nuclear magnetic resonance (NMR) spectroscopy and X-ray crystal analysis revealed that the linear pentacyclic stibole was highly symmetric in both the solution and crystal states. In contrast, the curved pentacyclic stibole adopted a helical structure in solution, and surprisingly, only M helical molecules were crystallized from the racemate. All synthesized compounds produced very weak or no emissions at room temperature or in the solid state. In contrast, the linear penta- and tetracyclic stiboles exhibited clear phosphorescence emissions in the CHCl3 frozen matrix at 77 K under aerobic conditions.


Assuntos
Arsênio/química , Benzeno/química , Compostos Heterocíclicos/química , Hidrocarbonetos Bromados/química , Cristalografia por Raios X , Luminescência , Modelos Moleculares , Estrutura Molecular
4.
Beilstein J Org Chem ; 16: 1075-1083, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32550922

RESUMO

Most heteroaryl selenides and diselenides are biologically active, with some reported to act as antioxidants and show activities that are medicinally relevant; hence, the development of efficient methods for their synthesis is an important objective. Herein, a simple method for the synthesis of selenides and diselenides bearing imidazo[1,2-a]pyridine rings and their anticancer activity are described. The double C-H selenation of imidazo[1,2-a]pyridine with Se powder was catalyzed by CuI (10 mol %) ligated with 1,10-phenanthroline (10 mol %) at 130 °C under aerobic conditions. The selenides or diselenides were prepared almost selectively using selenium powder in an appropriate quantity under otherwise identical reaction conditions. The prepared selenides and diselenides bearing two imidazo[1,2-a]pyridine rings were all novel compounds. Among the prepared diselenides and selenides that exhibited cytotoxicity against cancer cells, bis[2-(4-methoxyphenyl)imidazo[1,2-a]pyridin-3-yl] diselenide showed an excellent anticancer activity and low cytotoxicity toward noncancer cells, suggesting that this diselenide is a potential lead compound for anticancer therapy.

5.
J Toxicol Sci ; 44(5): 327-333, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31068538

RESUMO

Metallothionein (MT) is a low-molecular-weight, cysteine-rich, and metal-binding protein that protects cells from the cytotoxic effects of heavy metals and reactive oxygen species. Previously, we found that transcriptional induction of endothelial MT-1A was mediated by not only the metal-regulatory transcription factor 1 (MTF-1)-metal responsive element (MRE) pathway but also the nuclear factor-erythroid 2-related factor 2 (Nrf2)-antioxidant response element/electrophile responsive element (ARE) pathway, whereas that of MT-2A was mediated only by the MTF-1-MRE pathway, using the organopnictogen compounds tris(pentafluorophenyl)stibane, tris(pentafluorophenyl)arsane, and tris(pentafluorophenyl)phosphane as molecular probes in vascular endothelial cells. In the present study, we investigated the binding sites of MTF-1 and Nrf2 in the promoter regions of MTs in cultured bovine aortic endothelial cells treated with these organopnictogen compounds. We propose potential mechanisms underlying transcriptional induction of endothelial MT isoforms. Specifically, both MRE activation by MTF-1 and that of ARE in the promoter region of the MT-2A gene by Nrf2 are involved in transcriptional induction of MT-1A, whereas only MRE activation by MTF-1 or other transcriptional factor(s) is required for transcriptional induction of MT-2A in vascular endothelial cells.


Assuntos
Células Endoteliais/efeitos dos fármacos , Metalotioneína/genética , Fosfinas/toxicidade , Animais , Aorta/citologia , Bovinos , Células Cultivadas , Proteínas de Ligação a DNA/genética , Células Endoteliais/metabolismo , Fator 2 Relacionado a NF-E2/genética , Isoformas de Proteínas/genética , Fatores de Transcrição/genética , Transcrição Gênica , Fator MTF-1 de Transcrição
6.
Bioorg Med Chem Lett ; 28(2): 152-154, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29198863

RESUMO

Trisubstituted 5-organostibano-1H-1,2,3-triazoles (3a-f) were synthesized by the Cu-catalyzed azide-alkyne cycloaddition of various ethynylstibanes (1) with benzylazide (2) in the presence of CuBr (5 mol%) under aerobic conditions. The reaction of 5-stibanotriazoles with HCl afforded C5-unsubstituted 1,2,3-triazoles (4a-f). The antitumor activity of trisubstituted 5-organostibano-1H-1,2,3-triazoles (3a-f) and their 5-unsubstituted 1,2,3-triazoles (4a-f) were evaluated in several tumor cell lines. All 5-stibanotriazoles (3a-f) exerted an excellent antitumor activity. On the contrary, 5-unsubstituted 1,2,3-triazoles (4a-f) without a diphenylantimony group in the molecule exhibited very low antitumor activity compared with 5-stibanotriazoles (3a-f). In compounds of both the series, the substituted 4-butyl group appeared to decrease antitumor activity. However, results suggested that organometal (antimony) in the molecule was required for greater antitumor activity. In addition, all 5-stibanotriazoles (3a-f), but not all 5-unsubstituted 1,2,3-triazoles (4a-f), exhibited cytotoxicity in normal vascular endothelial cells derived from bovine aorta. Among the compounds (3b-e) that exhibited excellent antitumor activity, those with 4-methylphenyl (3b) and 1-cyclohexenyl (3e) showed relatively low cytotoxicity to vascular endothelial cells. Together, these results suggest that trisubstituted 5-organostibano-1H-1,2,3-triazoles, including compounds 3b and 3e, may serve as potential anticancer therapeutic drugs in the future.


Assuntos
Antineoplásicos/farmacologia , Triazóis/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Bovinos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células Endoteliais/efeitos dos fármacos , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Triazóis/síntese química , Triazóis/química
7.
Int J Mol Sci ; 17(9)2016 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-27563876

RESUMO

Vascular endothelial cells cover the luminal surface of blood vessels and contribute to the prevention of vascular disorders such as atherosclerosis. Metallothionein (MT) is a low molecular weight, cysteine-rich, metal-binding, inducible protein, which protects cells from the toxicity of heavy metals and active oxygen species. Endothelial MT is not induced by inorganic zinc. Adequate tools are required to investigate the mechanisms underlying endothelial MT induction. In the present study, we found that an organoantimony compound, tris(pentafluorophenyl)stibane, induces gene expression of MT-1A and MT-2A, which are subisoforms of MT in bovine aortic endothelial cells. The data reveal that MT-1A is induced by activation of both the MTF-1-MRE and Nrf2-ARE pathways, whereas MT-2A expression requires only activation of the MTF-1-MRE pathway. The present data suggest that the original role of MT-1 is to protect cells from heavy metal toxicity and oxidative stress in the biological defense system, while that of MT-2 is to regulate intracellular zinc metabolism.


Assuntos
Aorta/citologia , Células Endoteliais/metabolismo , Hidrocarbonetos Clorados/farmacologia , Metalotioneína/genética , Animais , Bovinos , Proteínas de Ligação a DNA/genética , Células Endoteliais/efeitos dos fármacos , Glutamato-Cisteína Ligase/genética , Heme Oxigenase-1/genética , Fator 2 Relacionado a NF-E2/genética , Isoformas de Proteínas/genética , Fatores de Transcrição/genética , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/genética , Fator MTF-1 de Transcrição
8.
J Inorg Biochem ; 117: 140-6, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23085594

RESUMO

Zinc is an essential micronutrient, deficiency of which results in growth retardation, immunodeficiency, and neurological diseases such as dysgeusia. Several zinc coordination compounds are used for zinc supplementation; however, supplemented zinc ions have no specificity and interact with various groups of molecules. Here, we found that, from a library of 30 zinc coordination compounds, bis(L-cysteinato)zincate(II), designated Z01, functioned as a metallothionein (MT) inducer. Z01 induced MT expression mediated by the transcription factor MTF-1, without inducing cell-stress-related heme oxygenase-1 gene expression at specific concentration. The zinc ion was necessary for the MT induction. (65)Zn incorporation following treatment with (65)Zn-labeled Z01 suggested that Z01 did not act as zinc ionophore despite its hydrophilicity. Electrophoretic mobility shift assays revealed that Z01 facilitates MTF-1-MRE complex formation, and, by inference, transfer of zinc from Z01 to MTF-1. Phosphorylated ERK levels were increased by ZnSO(4) treatment but not by Z01. Although our data do not definitely prove that Z01 is an MTF-1-specific activator, our observations suggest that zinc coordination compounds can regulate zinc distribution and act as zinc donors for specific molecules.


Assuntos
Complexos de Coordenação/química , Cisteína/análogos & derivados , Expressão Gênica , Metalotioneína/genética , Transcrição Gênica , Zinco/química , Animais , Linhagem Celular Tumoral , Complexos de Coordenação/farmacologia , Cisteína/química , Cisteína/farmacologia , Ensaio de Desvio de Mobilidade Eletroforética , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Regiões Promotoras Genéticas , Transfecção
9.
J Inorg Biochem ; 117: 77-84, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23078777

RESUMO

A novel organobismuth compound, 1-[(2-di-p-tolylbismuthanophenyl)diazenyl]pyrrolidine (4), which has 1-(phenyldiazenyl)pyrrolidine (1) substituent in a benzene ring of tri(p-tolyl)bismuthane (2), was synthesized and tested for biological activity toward human tumor cell lines. 4 had a potent anti-proliferative effect on human cancer cell lines, although both 1 and 2 exhibited only weak activity. The sensitivity of leukemic cell lines to 4 was relatively high; IC(50) values for the human leukemia cell line NB4 and cervical cancer cell line HeLa were 0.88 µM and 5.36 µM, respectively. Treatment of NB4 cells with 4 induced apoptosis, loss of mitochondrial membrane potential (ΔΨ(mt)) and the generation of cellular reactive oxygen species (ROS). 1 and 2 did not induce apoptosis and had only a marginal effect on ΔΨ(mt) and the generation of ROS. N-acetyl cysteine (NAC) reduced the generation of ROS and conferred protection against 4-induced apoptosis, indicating a role for oxidative stress. 4 did not inhibit the polymerization of tubulin in vitro. 1-[2-(di-p-tolylstibanophenyl)diazenyl]pyrrolidine (3), which has the same chemical structure as 4 but contains antimony in place of bismuth, did not show any cytotoxic activity. The results suggest that the conjugated structure of the diazenylpyrrolidine moiety and bismuth center are key to the bioactivity of 4.


Assuntos
Antineoplásicos/farmacologia , Apoptose , Leucemia Promielocítica Aguda/metabolismo , Compostos Organometálicos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Antineoplásicos/química , Divisão Celular , Linhagem Celular Tumoral , Células HeLa , Humanos , Leucemia Promielocítica Aguda/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Compostos Organometálicos/química , Tubulina (Proteína)/metabolismo
10.
J Org Chem ; 77(1): 729-32, 2012 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-22106921

RESUMO

We report synthesis of dibenzoaluminepin as the first aluminepin, an aluminum analogue of borepin and gallepin. This compound contains one molecule of ethereal solvent on the Al atom, which adopts a tetrahedral geometry. The central 7-membered aluminepin ring has a boatlike conformation and was characterized by single-crystal X-ray diffraction, (1)H/(13)C NMR, and DFT studies. In addition, NICS, NBO, and theoretical calculations provide insight into the nature of the bonding and aromaticity of aluminepins.


Assuntos
Alumínio/química , Compostos Organometálicos/síntese química , Estilbenos/síntese química , Estanho/química , Cristalografia por Raios X , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética , Conformação Molecular , Compostos Organometálicos/química , Estilbenos/química , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA