Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Drug Metab Dispos ; 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37963658

RESUMO

Our recent study revealed that SLC49A4, known as disrupted in renal carcinoma 2, is a H+-coupled lysosomal exporter for pyridoxine (vitamin B6), a cationic compound, and involved in the regulation of its lysosomal and cellular levels. We here examined a possibility that this transporter might also transport cationic amphiphilic drugs (CADs) that are known to undergo lysosomal trapping, using pyrilamine, an H1-antagonist, as a model CAD and the COS-7 cell line as a model cell system for transient introduction of human SLC49A4 and a recombinant SLC49A4 protein (SLC49A4-AA), in which the N-terminal dileucine motif involved in lysosomal localization was removed by replacing with dialanine for redirected localization to the plasma membrane. The introduction of SLC49A4 into COS-7 cells induced a significant decrease in the accumulation of pyrilamine in the intracellular compartments in the cells treated with digitonin for permeabilization of plasma membranes, suggesting its operation for lysosomal pyrilamine export. Accordingly, functional analysis using the SLC49A4-AA mutant, which operates for cellular uptake at the plasma membrane, in transiently transfected COS-7 cells demonstrated its H+-coupled operation for pyrilamine transport, which was saturable with a Michaelis constant of 132 µM at pH 5.5. In addition, many CADs that may potentially undergo lysosomal trapping, which include imipramine, propranolol, verapamil, and some others, were found to inhibit SLC49A4-AA-mediated pyrilamine transport, suggesting their affinity for SLC49A4. These results suggest that SLC49A4 is involved in the lysosomal trapping of pyrilamine, operating for its exit. The CADs that inhibited SLC49A4-AA-mediated pyrilamine transport could also be SLC49A4 substrate candidates. Significance Statement SLC49A4 mediates the transport of pyrilamine in a H+-coupled manner at the lysosomal membrane. This could be a newly identified mechanism for lysosomal export involved in its lysosomal trapping.

2.
Life Sci Alliance ; 6(2)2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36456177

RESUMO

Disrupted in renal carcinoma 2 (DIRC2) has gained interest because of its association with the development of renal cancer and cosegregation with a chromosomal translocation. It is a member of the SLC49 family (SLC49A4) and is considered to be an electrogenic lysosomal metabolite transporter; however, its molecular function has not been fully defined. To perform a detailed functional analysis of human DIRC2, we used a recombinant DIRC2 protein (DIRC2-AA), in which the N-terminal dileucine motif involved in its lysosomal localization was removed by replacing with dialanine for redirected localization to the plasma membrane, exposing intralysosomal segments to the extracellular space. The DIRC2-AA mutant induced the cellular uptake of pyridoxine (vitamin B6) under acidic conditions when expressed transiently in COS-7 cells. In addition, uptake was markedly inhibited by protonophores, indicating its function through an H+-coupled mechanism. In separate experiments, the transient overexpression of unmodified DIRC2 (tagged with HA) in human embryonic kidney 293 cells reduced cellular pyridoxine accumulation induced by transiently introduced human thiamine transporter 2/SLC19A3 (tagged with FLAG), a plasma membrane thiamine transporter that also transports pyridoxine. The cellular accumulation of pyridoxine in Caco-2 cells as a cell model was increased by the knockdown of endogenous DIRC2. Overall, the results indicate that DIRC2 is an H+-driven lysosomal pyridoxine exporter. Its overexpression leads to a reduction in cellular pyridoxine accumulation associated with reduced lysosomal accumulation and, conversely, its suppression results in an increase in lysosomal and cellular pyridoxine accumulation.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Proteínas de Membrana Transportadoras , Humanos , Células CACO-2 , Carcinoma de Células Renais/genética , Neoplasias Renais/genética , Lisossomos , Proteínas de Membrana Transportadoras/genética , Piridoxina , Tiamina
3.
J Biol Chem ; 298(8): 102161, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35724964

RESUMO

Recent studies have shown that human solute carrier SLC19A3 (hSLC19A3) can transport pyridoxine (vitamin B6) in addition to thiamine (vitamin B1), its originally identified substrate, whereas rat and mouse orthologs of hSLC19A3 can transport thiamine but not pyridoxine. This finding implies that some amino acid residues required for pyridoxine transport, but not for thiamine transport, are specific to hSLC19A3. Here, we sought to identify these residues to help clarify the unique operational mechanism of SLC19A3 through analyses comparing hSLC19A3 and mouse Slc19a3 (mSlc19a3). For our analyses, hSLC19A3 mutants were prepared by replacing selected amino acid residues with their counterparts in mSlc19a3, and mSlc19a3 mutants were prepared by substituting selected residues with their hSLC19A3 counterparts. We assessed pyridoxine and thiamine transport by these mutants in transiently transfected human embryonic kidney 293 cells. Our analyses indicated that the hSLC19A3-specific amino acid residues of Gln86, Gly87, Ile91, Thr93, Trp94, Ser168, and Asn173 are critical for pyridoxine transport. These seven amino acid residues were found to be mostly conserved in the SLC19A3 orthologs that can transport pyridoxine but not in orthologs that are unable to transport pyridoxine. In addition, these residues were also found to be conserved in several SLC19A2 orthologs, including rat, mouse, and human orthologs, which were all found to effectively transport both pyridoxine and thiamine, exhibiting no species-dependent differences. Together, these findings provide a molecular basis for the unique functional characteristics of SLC19A3 and also of SLC19A2.


Assuntos
Aminoácidos , Proteínas de Membrana Transportadoras/metabolismo , Aminoácidos/metabolismo , Animais , Transporte Biológico , Células Epiteliais/metabolismo , Humanos , Camundongos , Ratos , Tiamina/genética , Tiamina/metabolismo
4.
Drug Metab Pharmacokinet ; 43: 100443, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35144162

RESUMO

Orotate, a nutritional compound typically utilized as an intermediate in pyrimidine synthesis, has been suggested to undergo renal reabsorption. However, the detailed mechanisms involved in the process remain unclear, with only urate transporter 1 (URAT1/SLC22A12) being indicated as a transporter involved in its tubular uptake. As an attempt to identify transporters involved in that to help clarify the mechanisms, we examined a possibility that organic anion transporter 10 (OAT10/SLC22A13), which is present at the brush border membrane in renal tubular epithelial cells, could transport orotate. The operation of human OAT10 for orotate transport was demonstrated indeed and analyzed in detail in Madin-Darby canine kidney II cells introduced with this transporter by stable transfection. Orotate transport by OAT10 was found to be kinetically saturable with a biphasic characteristic and dependent on Cl-. These are unique characteristics previously unknown in its operation for the other substrates. Orotate transport by OAT10 was, on the other hand, inhibited by several anionic compounds known as OAT10 inhibitors. Finally, the rat ortholog of OAT10 was found not to be able to transport orotate, indicating animal species differences in that function. Thus, human OAT10 has been demonstrated to operate for orotate transport with unique characteristics.


Assuntos
Transportadores de Ânions Orgânicos , Animais , Transporte Biológico , Cães , Humanos , Rim/metabolismo , Células Madin Darby de Rim Canino , Microvilosidades/metabolismo , Transportadores de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos/metabolismo , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Ratos
5.
Am J Physiol Gastrointest Liver Physiol ; 320(1): G108-G116, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33146542

RESUMO

Thiamin (vitamin B1) plays critical roles in normal metabolism and function of all mammalian cells. Pancreatic acinar cells (PACs) import thiamin from circulation via specific carrier-mediated uptake that involves thiamin transporter-1 and -2 (THTR-1 and -2; products of SLC19A2 and SLC19A3, respectively). Our aim in this study was to investigate the effect(s) of proinflammatory cytokines on thiamin uptake by PACs. We used human primary (h)PACs, PAC 266-6 cells, and mice in vivo as models in the investigations. First, we examined the level of expression of THTR-1 and -2 mRNA in pancreatic tissues of patients with chronic pancreatitis and observed severe reduction in their expression compared with normal control subjects. Exposing hPACs and PAC 266-6 to proinflammatory cytokines (hyper IL-6, TNF-α, and IL-1ß) was found to lead to a significant inhibition in thiamin uptake. Focusing on hyper-IL-6 (which also inhibited thiamin uptake by primary mouse PACs), the inhibition in thiamin uptake was found to be associated with significant reduction in THTR-1 and -2 proteins and mRNA expression as well as in activity of the SLC19A2 and SLC19A3 promoters; it was also associated with reduction in level of expression of the transcription factor Sp1 (which is required for activity of these promoters). Finally, blocking the intracellular Stat3 signaling pathway was found to lead to a significant reversal in the inhibitory effect of hyper IL-6 on thiamin uptake by PAC 266-6. These results show that exposure of PACs to proinflammatory cytokines negatively impacts thiamin uptake via (at least in part) transcriptional mechanism(s).NEW & NOTEWORTHY Findings of the current study demonstrate, for the first time, that exposure of pancreatic acinar cells to proinflammatory cytokines (including hyper IL-6) cause significant inhibition in vitamin B1 (thiamin; a micronutrient that is essential for normal cellular energy metabolism) and that this effect is mediated at the level of transcription of the thiamin transporter genes SLC19A2 and SLC19A3.


Assuntos
Células Acinares/efeitos dos fármacos , Transporte Biológico/efeitos dos fármacos , Citocinas/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Acinares/metabolismo , Animais , Citocinas/metabolismo , Células Epiteliais/metabolismo , Humanos , Proteínas de Membrana Transportadoras/efeitos dos fármacos , Proteínas de Membrana Transportadoras/genética , Camundongos , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo , Pâncreas Exócrino/efeitos dos fármacos , Pâncreas Exócrino/metabolismo , Regiões Promotoras Genéticas/efeitos dos fármacos , RNA Mensageiro/metabolismo
6.
J Biol Chem ; 295(50): 16998-17008, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33008889

RESUMO

SLC19A2 and SLC19A3, also known as thiamine transporters (THTR) 1 and 2, respectively, transport the positively charged thiamine (vitamin B1) into cells to enable its efficient utilization. SLC19A2 and SLC19A3 are also known to transport structurally unrelated cationic drugs, such as metformin, but whether this charge selectivity extends to other molecules, such as pyridoxine (vitamin B6), is unknown. We tested this possibility using Madin-Darby canine kidney II (MDCKII) cells and human embryonic kidney 293 (HEK293) cells for transfection experiments, and also using Caco-2 cells as human intestinal epithelial model cells. The stable expression of SLC19A2 and SLC19A3 in MDCKII cells (as well as their transient expression in HEK293 cells) led to a significant induction in pyridoxine uptake at pH 5.5 compared with control cells. The induced uptake was pH-dependent, favoring acidic conditions over neutral to basic conditions, and protonophore-sensitive. It was saturable as a function of pyridoxine concentration, with an apparent Km of 37.8 and 18.5 µm, for SLC19A2 and SLC19A3, respectively, and inhibited by the pyridoxine analogs pyridoxal and pyridoxamine as well as thiamine. We also found that silencing the endogenous SLC19A3, but not SLC19A2, of Caco-2 cells with gene-specific siRNAs lead to a significant reduction in carrier-mediated pyridoxine uptake. These results show that SLC19A2 and SLC19A3 are capable of recognizing/transporting pyridoxine, favoring acidic conditions for operation, and suggest a possible role for these transporters in pyridoxine transport mainly in tissues with an acidic environment like the small intestine, which has an acidic surface microclimate.


Assuntos
Ácidos/metabolismo , Células Epiteliais/metabolismo , Intestino Delgado/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Microclima , Animais , Transporte Biológico , Cães , Humanos , Concentração de Íons de Hidrogênio , Células Madin Darby de Rim Canino , Tiamina/metabolismo
7.
Drug Metab Pharmacokinet ; 35(4): 374-382, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32651148

RESUMO

To develop a novel intestinal drug absorption system using intestinal epithelial cells derived from human induced pluripotent stem (iPS) cells, the cells must possess sufficient pharmacokinetic functions. However, the CYP3A4/5 activities of human iPS cell-derived small intestinal epithelial cells prepared using conventional differentiation methods is low. Further, studies of the CYP3A4/5 activities of human iPS-derived and primary small intestinal cells are not available. To fill this gap in our knowledge, here we used forskolin to develop a new differentiation protocol that activates adenosine monophosphate signaling. mRNA expressions of human iPS cell-derived small intestinal epithelial cells, such as small intestine markers, drug-metabolizing enzymes, and drug transporters, were comparable to or greater than those of the adult small intestine. The activities of CYP3A4/5 in the differentiated cells were equal to those of human primary small intestinal cells. The differentiated cells had P-glycoprotein and PEPT1 activities equivalent to those of Caco-2 cells. Differentiated cells were superior to Caco-2 cells for predicting the membrane permeability of drugs that were absorbed through a paracellular pathway and via drug transporters. In summary, here we produced human iPS cell-derived small intestinal epithelial cells with CYP3A4/5 activities equivalent to those of human primary small intestinal cells.


Assuntos
Células Epiteliais/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Intestino Delgado/metabolismo , Ácidos Alcanossulfônicos/farmacocinética , Células CACO-2 , Células Cultivadas , Ciclosporinas/farmacocinética , Digoxina/farmacocinética , Dipeptídeos/farmacocinética , Humanos , Ibuprofeno/farmacocinética , Intestino Delgado/citologia , Morfolinas/farmacocinética
8.
J Pharm Sci ; 109(8): 2622-2628, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32339528

RESUMO

Equilibrative nucleobase transporter 1 (ENBT1/SLC43A3) has recently been identified as a purine-selective nucleobase transporter. Although it is highly expressed in the liver, its role in nucleobase transport has not been confirmed yet in hepatocytes or any relevant cell models. We, therefore, examined its role in adenine transport in the HepG2 cell line as a human hepatocyte model. The uptake of [3H]adenine in HepG2 cells was highly saturable, indicating the involvement of carrier-mediated transport. The carrier-mediated transport component, for which the Michaelis constant was estimated to be 0.268 µM, was sensitive to decynium-22, an ENBT1 inhibitor, with the half maximal inhibitory concentration of 2.59 µM, which was comparable to that of 2.30 µM for [3H]adenine uptake by ENBT1 in its transient transfectant human embryonic kidney 293 cells. Although equilibrative nucleoside transporter 1 (ENT1/SLC29A1) and ENT2/SLC29A2 are also known to be able to transport adenine, [3H]adenine uptake in HepG2 cells was not inhibited by the ENT1/2-specific inhibitor of either dipyridamole or nitrobenzylthioinosine. Finally, [3H]adenine uptake was extensively reduced by silencing of ENBT1 by RNA interference in the hepatocyte model. All these results, taken together, suggest the predominant role of ENBT1 in the uptake of adenine in HepG2 cells.


Assuntos
Transportador Equilibrativo 1 de Nucleosídeo , Transportador Equilibrativo 2 de Nucleosídeo , Adenina , Sistemas de Transporte de Aminoácidos/metabolismo , Transporte Biológico , Transportador Equilibrativo 1 de Nucleosídeo/genética , Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Transportador Equilibrativo 2 de Nucleosídeo/genética , Transportador Equilibrativo 2 de Nucleosídeo/metabolismo , Células Hep G2 , Humanos
9.
Physiol Rep ; 6(10): e13714, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29845779

RESUMO

Sodium-dependent nucleobase transporter 1 (SNBT1) is a nucleobase-specific transporter identified in our recent study. In an attempt to search for its potential substrates other than nucleobases in this study, we could successfully find urate, a metabolic derivative of purine nucleobases, as a novel substrate, as indicated by its specific Na+ -dependent and saturable transport, with a Michaelis constant of 433 µmol/L, by rat SNBT1 (rSNBT1) stably expressed in Madin-Darby canine kidney II cells. However, urate uptake was observed only barely in the everted tissue sacs of the rat small intestine, in which rSNBT1 operates for nucleobase uptake. These findings suggested that urate undergoes a futile cycle, in which urate transported into epithelial cells is immediately effluxed back by urate efflux transporters, in the small intestine. In subsequent attempts to examine that possibility, such a futile urate cycle was demonstrated in the human embryonic kidney 293 cell line as a model cell system, where urate uptake induced by transiently introduced rSNBT1 was extensively reduced by the co-introduction of rat breast cancer resistance protein (rBCRP), a urate efflux transporter present in the small intestine. However, urate uptake was not raised in the presence of Ko143, a BCRP inhibitor, in the everted intestinal tissue sacs, suggesting that some other transporter might also be involved in urate efflux. The newly found urate transport function of SNBT1, together with the suggested futile urate cycle in the small intestine, should be of interest for its evolutional and biological implications, although SNBT1 is genetically deficient in humans.


Assuntos
Proteínas de Transporte de Nucleobases/metabolismo , Ácido Úrico/metabolismo , Animais , Transporte Biológico , Cães , Células HEK293 , Humanos , Intestino Delgado/metabolismo , Células Madin Darby de Rim Canino , Masculino , Ratos Wistar
10.
J Pharmacol Exp Ther ; 360(1): 59-68, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27807008

RESUMO

A suicide gene therapy using herpes simplex virus thymidine kinase (HSV-TK) with ganciclovir (GCV) has been under development as a tumor-targeted therapy; however, the mechanism of cellular GCV uptake, which is prerequisite in the therapy, has not been clarified. In an attempt to resolve this situation and gain information to optimize HSV-TK/GCV system for cancer therapy, we found that human equilibrative nucleobase transporter 1 (ENBT1) can transport GCV with a Michaelis constant of 2.75 mM in Madin-Darby canine kidney II (MDCKII) cells stably transfected with this transporter. In subsequent experiments using green fluorescent protein (GFP)-tagged ENBT1 (GFP-ENBT1) and HSV-TK, the uptake of GCV (30 µM), which was minimal in MDCKII cells and unchanged by their transfection with HSV-TK alone, was increased extensively by their transfection with GFP-ENBT1, together with HSV-TK. Accordingly, cytotoxicity, which was assessed by the WST-8 cell viability assay after the treatment of those cells with GCV (30 µM) for 72 hours, was induced in those transfected with GFP-ENBT1, together with HSV-TK but not in those transfected with HSV-TK alone. These results suggest that ENBT1 could facilitate GCV uptake and thereby enhance cytotoxicity in HSV-TK/GCV system. We also identified Helacyton gartleri (HeLa) and HepG2 as cancer cell lines that are rich with ENBT1 and A549, HCT-15 and MCF-7 as those poor with ENBT1. Accordingly, the HSV-TK/GCV system was effective in inducing cytotoxicity in the former but not in the latter. Thus, ENBT1 was found to be a GCV transporter that could enhance the performance of HSV-TK/GCV suicide gene therapy.


Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Apoptose/genética , Ganciclovir/metabolismo , Ganciclovir/farmacologia , Terapia Genética , Simplexvirus/enzimologia , Timidina Quinase/genética , Animais , Transporte Biológico , Linhagem Celular , Cães , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Simplexvirus/genética
11.
Ann Rheum Dis ; 76(5): 869-877, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27899376

RESUMO

OBJECTIVE: A genome-wide association study (GWAS) of gout and its subtypes was performed to identify novel gout loci, including those that are subtype-specific. METHODS: Putative causal association signals from a GWAS of 945 clinically defined gout cases and 1213 controls from Japanese males were replicated with 1396 cases and 1268 controls using a custom chip of 1961 single nucleotide polymorphisms (SNPs). We also first conducted GWASs of gout subtypes. Replication with Caucasian and New Zealand Polynesian samples was done to further validate the loci identified in this study. RESULTS: In addition to the five loci we reported previously, further susceptibility loci were identified at a genome-wide significance level (p<5.0×10-8): urate transporter genes (SLC22A12 and SLC17A1) and HIST1H2BF-HIST1H4E for all gout cases, and NIPAL1 and FAM35A for the renal underexcretion gout subtype. While NIPAL1 encodes a magnesium transporter, functional analysis did not detect urate transport via NIPAL1, suggesting an indirect association with urate handling. Localisation analysis in the human kidney revealed expression of NIPAL1 and FAM35A mainly in the distal tubules, which suggests the involvement of the distal nephron in urate handling in humans. Clinically ascertained male patients with gout and controls of Caucasian and Polynesian ancestries were also genotyped, and FAM35A was associated with gout in all cases. A meta-analysis of the three populations revealed FAM35A to be associated with gout at a genome-wide level of significance (p meta =3.58×10-8). CONCLUSIONS: Our findings including novel gout risk loci provide further understanding of the molecular pathogenesis of gout and lead to a novel concept for the therapeutic target of gout/hyperuricaemia.


Assuntos
Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Gota/genética , Adulto , Idoso , Povo Asiático/genética , Estudos de Casos e Controles , Proteínas de Transporte de Cátions/genética , Proteínas de Ciclo Celular , Proteínas de Ligação a DNA , Loci Gênicos , Genótipo , Gota/classificação , Histonas/genética , Humanos , Japão , Masculino , Pessoa de Meia-Idade , Havaiano Nativo ou Outro Ilhéu do Pacífico/genética , Transportadores de Ânions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/genética , Polimorfismo de Nucleotídeo Único , Proteínas/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo I/genética , População Branca/genética
12.
Sci Rep ; 5: 15057, 2015 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-26455426

RESUMO

The purine salvage pathway plays a major role in the nucleotide production, relying on the supply of nucleobases and nucleosides from extracellular sources. Although specific transporters have been suggested to be involved in facilitating their transport across the plasma membrane in mammals, those which are specifically responsible for utilization of extracellular nucleobases remain unknown. Here we present the molecular and functional characterization of SLC43A3, an orphan transporter belonging to an amino acid transporter family, as a purine-selective nucleobase transporter. SLC43A3 was highly expressed in the liver, where it was localized to the sinusoidal membrane of hepatocytes, and the lung. In addition, SLC43A3 expressed in MDCKII cells mediated the uptake of purine nucleobases such as adenine, guanine, and hypoxanthine without requiring typical driving ions such as Na(+) and H(+), but it did not mediate the uptake of nucleosides. When SLC43A3 was expressed in APRT/HPRT1-deficient A9 cells, adenine uptake was found to be low. However, it was markedly enhanced by the introduction of SLC43A3 with APRT. In HeLa cells, knock-down of SLC43A3 markedly decreased adenine uptake. These data suggest that SLC43A3 is a facilitative and purine-selective nucleobase transporter that mediates the cellular uptake of extracellular purine nucleobases in cooperation with salvage enzymes.


Assuntos
Sistemas de Transporte de Aminoácidos/genética , Transportador Equilibrativo 1 de Nucleosídeo/genética , Purinas/metabolismo , Adenina/metabolismo , Adenina Fosforribosiltransferase/antagonistas & inibidores , Adenina Fosforribosiltransferase/genética , Adenina Fosforribosiltransferase/metabolismo , Adenosina/metabolismo , Sistemas de Transporte de Aminoácidos/antagonistas & inibidores , Sistemas de Transporte de Aminoácidos/metabolismo , Animais , Transporte Biológico , Cães , Transportador Equilibrativo 1 de Nucleosídeo/antagonistas & inibidores , Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Células HEK293 , Células HeLa , Hepatócitos/metabolismo , Humanos , Hipoxantina/metabolismo , Fígado/metabolismo , Pulmão/metabolismo , Células Madin Darby de Rim Canino , Camundongos , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Timidina/metabolismo , Uridina/metabolismo
13.
J Pharm Pharm Sci ; 12(3): 388-96, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-20067714

RESUMO

PURPOSE: Human multidrug and toxin extrusion protein 1 (hMATE1) and hMATE2-K are organic cation/H+ antiporters that have recently been identified and suggested to be involved in the renal brush border secretion of various organic cations. Information about functional characteristics of them has been accumulating, but still insufficient to fully understand their functions and respective roles. The present study was conducted to help clarify them. METHODS: The cDNA of hMATE1 was isolated from human brain cDNA by RT-PCR and hMATE2-K cDNA was from human kidney cDNA. HEK293 cells were stably transfected with hMATE1 and hMATE2-K, and the cellular uptakes of [3H]cimetidine and [14C]tetraethylammonium (TEA) were evaluated. RESULTS: It was first found that both hMATE1 and hMATE2-K can transport cimetidine with high affinities, indicated by small Michaelis constants of 8.00 mM and 18.18 mM, respectively. These were much smaller than those for TEA (366 mM and 375 mM, respectively, for hMATE1 and hMATE2-K). Subsequent investigation using cimetidine as a probe substrate into the profiles of inhibition of the two hMATEs by various compounds indicated that they are similar in principle but different to some extent in substrate recognition, reflecting the modest differences in amino acid sequences between them. In fact, cimetidine transport by hMATE1 was correlated to that by hMATE2-K, which is 65% similar to hMATE1, but not as good as to that by rat MATE1, which is 86% similar. CONCLUSIONS: Cimetidine was demonstrated to be a high affinity substrate of both hMATEs. Subsequent evaluation of the inhibition of hMATEs by various compounds indicated no major difference in function or role between hMATE1 and hMATE2-K.


Assuntos
Cimetidina/metabolismo , Inibidores Enzimáticos/metabolismo , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Tetraetilamônio/metabolismo , Animais , Antiporters/metabolismo , Linhagem Celular Tumoral , Cimetidina/farmacocinética , DNA Complementar/isolamento & purificação , Humanos , Rim/metabolismo , Cinética , Proteínas de Transporte de Cátions Orgânicos/antagonistas & inibidores , Proteínas de Transporte de Cátions Orgânicos/genética , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Especificidade da Espécie , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA