Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Exp Eye Res ; 165: 175-181, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28974356

RESUMO

Retinal degenerations, including age-related macular degeneration and the retinitis pigmentosa family of diseases, are among the leading causes of legal blindness in the United States. We previously found that Stanniocalcin-1 (STC-1) reduced photoreceptor loss in the S334ter-3 and Royal College of Surgeons rat models of retinal degeneration. The results were attributed in part to a reduction in oxidative stress. Herein, we tested the hypothesis that long-term delivery of STC-1 would provide therapeutic rescue in more chronic models of retinal degeneration. To achieve sustained delivery, we produced an adeno-associated virus (AAV) construct to express STC-1 (AAV-STC-1) under the control of a retinal ganglion cell targeting promoter human synapsin 1 (hSYN1). AAV-STC-1 was injected intravitreally into the P23H-1 and S334ter-4 rhodopsin transgenic rats at postnatal day 10. Tissues were collected at postnatal day 120 for confirmation of STC-1 overexpression and histologic and molecular analysis. Electroretinography (ERG) was performed in a cohort of animals at that time. Overexpression of STC-1 resulted in a significant preservation of photoreceptors as assessed by outer nuclear thickness in the P23H-1 (P < 0.05) and the S334ter-4 (P < 0.005) models compared to controls. Additionally, retinal function was significantly improved in the P23H-1 model with overexpressed STC-1 as assessed by ERG analysis (scotopic b-wave P < 0.005 and photopic b-wave P < 0.05). Microarray analysis identified common downstream gene expression changes that occurred in both models. Genes of interest based on their function were selected for validation by quantitative real-time PCR and were significantly increased in the S334ter-4 model.


Assuntos
Dependovirus , Glicoproteínas/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Retinose Pigmentar/tratamento farmacológico , Animais , Modelos Animais de Doenças , Eletrorretinografia , Glicoproteínas/administração & dosagem , Fármacos Neuroprotetores/administração & dosagem , Células Fotorreceptoras de Vertebrados/patologia , Ratos , Ratos Transgênicos , Retinose Pigmentar/patologia
2.
PLoS One ; 11(2): e0149501, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26895233

RESUMO

To understand visual functions mediated by intrinsically photosensitive melanopsin-expressing retinal ganglion cells (mRGCs), it is important to elucidate axonal projections from these cells into the brain. Initial studies reported that melanopsin is expressed only in retinal ganglion cells within the eye. However, recent studies in Opn4-Cre mice revealed Cre-mediated marker expression in multiple brain areas. These discoveries complicate the use of melanopsin-driven genetic labeling techniques to identify retinofugal projections specifically from mRGCs. To restrict labeling to mRGCs, we developed a recombinant adeno-associated virus (AAV) carrying a Cre-dependent reporter (human placental alkaline phosphatase) that was injected into the vitreous of Opn4-Cre mouse eyes. The labeling observed in the brain of these mice was necessarily restricted specifically to retinofugal projections from mRGCs in the injected eye. We found that mRGCs innervate multiple nuclei in the basal forebrain, hypothalamus, amygdala, thalamus and midbrain. Midline structures tended to be bilaterally innervated, whereas the lateral structures received mostly contralateral innervation. As validation of our approach, we found projection patterns largely corresponded with previously published results; however, we have also identified a few novel targets. Our discovery of projections to the central amygdala suggests a possible direct neural pathway for aversive responses to light in neonates. In addition, projections to the accessory optic system suggest that mRGCs play a direct role in visual tracking, responses that were previously attributed to other classes of retinal ganglion cells. Moreover, projections to the zona incerta raise the possibility that mRGCs could regulate visceral and sensory functions. However, additional studies are needed to investigate the actual photosensitivity of mRGCs that project to the different brain areas. Also, there is a concern of "overlabeling" with very sensitive reporters that uncover low levels of expression. Light-evoked signaling from these cells must be shown to be of sufficient sensitivity to elicit physiologically relevant responses.


Assuntos
Retina/metabolismo , Células Ganglionares da Retina/metabolismo , Opsinas de Bastonetes/biossíntese , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Dependovirus/genética , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Genes Reporter , Humanos , Injeções Intraoculares , Integrases/genética , Isoenzimas/genética , Isoenzimas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Retina/citologia
3.
Adv Exp Med Biol ; 854: 487-93, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26427450

RESUMO

MERTK-associated retinal degenerations are thought to have defects in phagocytosis of shed outer segment membranes by the retinal pigment epithelium (RPE), as do the rodent models of these diseases. We have subretinally injected an RPE-specific AAV2 vector, AAV2-VMD2-hMERTK, to determine whether this would provide long-term photoreceptor rescue in the RCS rat, which it did for up to 6.5 months, the longest time point examined. Moreover, we found phagosomes in the RPE in the rescued regions of RCS retinas soon after the onset of light. The same vector also had a major protective effect in Mertk-null mice, with a concomitant increase in ERG response amplitudes in the vector-injected eyes. These findings suggest that planned clinical trials with this vector will have a favorable outcome.


Assuntos
Terapia Genética/métodos , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/genética , Degeneração Retiniana/genética , Degeneração Retiniana/terapia , Animais , Bestrofinas , Canais de Cloreto/genética , Dependovirus/genética , Modelos Animais de Doenças , Eletrorretinografia , Proteínas do Olho/genética , Vetores Genéticos/genética , Humanos , Camundongos Knockout , Fagocitose/genética , Fagocitose/fisiologia , Fagossomos/metabolismo , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas/deficiência , Proteínas Proto-Oncogênicas/metabolismo , Ratos Mutantes , Ratos Sprague-Dawley , Receptores Proteína Tirosina Quinases/deficiência , Receptores Proteína Tirosina Quinases/metabolismo , Degeneração Retiniana/fisiopatologia , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/fisiopatologia , Resultado do Tratamento , c-Mer Tirosina Quinase
4.
PLoS Genet ; 11(12): e1005723, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26656104

RESUMO

Inherited photoreceptor degenerations (IPDs) are the most genetically heterogeneous of Mendelian diseases. Many IPDs exhibit substantial phenotypic variability, but the basis is usually unknown. Mutations in MERTK cause recessive IPD phenotypes associated with the RP38 locus. We have identified a murine genetic modifier of Mertk-associated photoreceptor degeneration, the C57BL/6 (B6) allele of which acts as a suppressor. Photoreceptors degenerate rapidly in Mertk-deficient animals homozygous for the 129P2/Ola (129) modifier allele, whereas animals heterozygous for B6 and 129 modifier alleles exhibit an unusual intermixing of degenerating and preserved retinal regions, with females more severely affected than males. Mertk-deficient mice homozygous for the B6 modifier allele display degeneration only in the far periphery, even at 8 months of age, and have improved retinal function compared to animals homozygous for the 129 allele. We genetically mapped the modifier to an approximately 2-megabase critical interval that includes Tyro3, a paralog of Mertk. Tyro3 expression in the outer retina varies with modifier genotype in a manner characteristic of a cis-acting expression quantitative trait locus (eQTL), with the B6 allele conferring an approximately three-fold higher expression level. Loss of Tyro3 function accelerates the pace of photoreceptor degeneration in Mertk knockout mice, and TYRO3 protein is more abundant in the retinal pigment epithelium (RPE) adjacent to preserved central retinal regions of Mertk knockout mice homozygous for the B6 modifier allele. Endogenous human TYRO3 protein co-localizes with nascent photoreceptor outer segment (POS) phagosomes in a primary RPE cell culture assay, and expression of murine Tyro3 in cultured cells stimulates phagocytic ingestion of POS. Our findings demonstrate that Tyro3 gene dosage modulates Mertk-associated retinal degeneration, provide strong evidence for a direct role for TYRO3 in RPE phagocytosis, and suggest that an eQTL can modify a recessive IPD.


Assuntos
Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/genética , Degeneração Retiniana/genética , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Knockout , Fagocitose , Células Fotorreceptoras/metabolismo , Células Fotorreceptoras/patologia , Proteínas Proto-Oncogênicas/biossíntese , Receptores Proteína Tirosina Quinases/biossíntese , Retina/metabolismo , Retina/patologia , Degeneração Retiniana/patologia , Epitélio Pigmentado da Retina/patologia , c-Mer Tirosina Quinase
5.
Invest Ophthalmol Vis Sci ; 53(4): 1895-904, 2012 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-22408006

RESUMO

PURPOSE: The absence of Mertk in RCS rats results in defective RPE phagocytosis, accumulation of outer segment (OS) debris in the subretinal space, and subsequent death of photoreceptors. Previous research utilizing Mertk gene replacement therapy in RCS rats provided proof of concept for treatment of this form of recessive retinitis pigmentosa (RP); however, the beneficial effects on retinal function were transient. In the present study, we evaluated whether delivery of a MERTK transgene using a tyrosine-mutant AAV8 capsid could lead to more robust and longer-term therapeutic outcomes than previously reported. METHODS: An AAV8 Y733F vector expressing a human MERTK cDNA driven by a RPE-selective promoter was administrated subretinally at postnatal day 2. Functional and morphological analyses were performed at 4 months and 8 months post-treatment. Retinal vasculature and Müller cell activation were analyzed by quantifying acellular capillaries and glial fibrillary acidic protein immunostaining, respectively. RESULTS: Electroretinographic responses from treated eyes were more than one-third of wild-type levels and OS were well preserved in the injection area even at 8 months. Rescue of RPE phagocytosis, prevention of retinal vasculature degeneration, and inhibition of Müller cell activation were demonstrated in the treated eyes for at least 8 months. CONCLUSIONS: This research describes a longer and much more robust functional and morphological rescue than previous studies. We also demonstrate for the first time that an AAV8 mutant capsid serotype vector has a substantial therapeutic potential for RPE-specific gene delivery. These results suggest that tyrosine-mutant AAV8 vectors hold promise for the treatment of individuals with MERTK-associated RP.


Assuntos
Terapia Genética/métodos , Proteínas Proto-Oncogênicas/administração & dosagem , Receptores Proteína Tirosina Quinases/administração & dosagem , Retinose Pigmentar/terapia , Animais , Animais Recém-Nascidos , Western Blotting , Modelos Animais de Doenças , Eletrorretinografia , Seguimentos , Vetores Genéticos , Humanos , Imuno-Histoquímica , Injeções , Microscopia Eletrônica de Transmissão , Mutação , Plasmídeos , Proteínas Proto-Oncogênicas/uso terapêutico , RNA/genética , Ratos , Ratos Mutantes , Receptores Proteína Tirosina Quinases/uso terapêutico , Retina , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/ultraestrutura , Retinose Pigmentar/genética , Retinose Pigmentar/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo , Tomografia de Coerência Óptica , Transgenes , Tirosina/genética , c-Mer Tirosina Quinase
7.
J Clin Invest ; 121(1): 369-83, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21135502

RESUMO

Retinal pigment epithelial (RPE) cell dysfunction plays a central role in various retinal degenerative diseases, but knowledge is limited regarding the pathways responsible for adult RPE stress responses in vivo. RPE mitochondrial dysfunction has been implicated in the pathogenesis of several forms of retinal degeneration. Here we have shown that postnatal ablation of RPE mitochondrial oxidative phosphorylation in mice triggers gradual epithelium dedifferentiation, typified by reduction of RPE-characteristic proteins and cellular hypertrophy. The electrical response of the retina to light decreased and photoreceptors eventually degenerated. Abnormal RPE cell behavior was associated with increased glycolysis and activation of, and dependence upon, the hepatocyte growth factor/met proto-oncogene pathway. RPE dedifferentiation and hypertrophy arose through stimulation of the AKT/mammalian target of rapamycin (AKT/mTOR) pathway. Administration of an oxidant to wild-type mice also caused RPE dedifferentiation and mTOR activation. Importantly, treatment with the mTOR inhibitor rapamycin blunted key aspects of dedifferentiation and preserved photoreceptor function for both insults. These results reveal an in vivo response of the mature RPE to diverse stressors that prolongs RPE cell survival at the expense of epithelial attributes and photoreceptor function. Our findings provide a rationale for mTOR pathway inhibition as a therapeutic strategy for retinal degenerative diseases involving RPE stress.


Assuntos
Degeneração Retiniana/etiologia , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Autofagia , Morte Celular , Desdiferenciação Celular/efeitos dos fármacos , Desdiferenciação Celular/fisiologia , Movimento Celular , Sobrevivência Celular , Feminino , Glicólise , Fator de Crescimento de Hepatócito/metabolismo , Hipertrofia , Masculino , Camundongos , Camundongos Transgênicos , Fosforilação Oxidativa , Células Fotorreceptoras de Vertebrados/efeitos dos fármacos , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Degeneração Retiniana/prevenção & controle , Epitélio Pigmentado da Retina/efeitos dos fármacos , Transdução de Sinais , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores
8.
J Comp Neurol ; 511(6): 724-35, 2008 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-18925574

RESUMO

Several neurotrophic factors (NTFs) are effective in protecting retinal photoreceptor cells from the damaging effects of constant light and slowing the rate of inherited photoreceptor degenerations. It is currently unclear whether, if continuously available, all NTFs can be protective for many or most retinal degenerations (RDs). We used transgenic mice that continuously overexpress the neurotrophin NT-3 from lens fibers under the control of the alphaA-crystallin promoter to test for neuroprotection in light-damage experiments and in four naturally occurring or transgenically induced RDs in mice. Lens-specific expression of NT-3 mRNA was demonstrated both by in situ hybridization in embryos and by reverse-transcriptase polymerase chain reaction (RT-PCR) in adult mice. Furthermore, NT-3 protein was found in abundance in the lens, ocular fluids, and retina by enzyme-linked immunosorbent assay (ELISA) and immunocytochemistry. Overexpression of NT-3 had no adverse effects on the structure or function of the retina for up to at least 14 months of age. Mice expressing the NT-3 transgene were protected from the damaging effects of constant light to a much greater degree than those receiving bolus injections of NT-3. When the NT-3 transgene was transferred into rd/rd, Rds/+, Q344ter mutant rhodopsin or Mertk knockout mice, overexpression of NT-3 had no protective effect on the RDs in these mice. Thus, specificity of the neuroprotective effect of NT-3 is clearly demonstrated, and different molecular mechanisms are inferred to mediate the protective effect in light-induced and inherited RDs.


Assuntos
Citoproteção/genética , Células Epiteliais/metabolismo , Cristalino/metabolismo , Neurotrofina 3/genética , Neurotrofina 3/metabolismo , Degeneração Retiniana/terapia , Animais , Ensaio de Imunoadsorção Enzimática , Imuno-Histoquímica , Cristalino/fisiopatologia , Cristalino/efeitos da radiação , Luz/efeitos adversos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes , Camundongos Transgênicos , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/patologia , Células Fotorreceptoras de Vertebrados/efeitos da radiação , Proteínas Proto-Oncogênicas/genética , RNA Mensageiro/metabolismo , Receptores Proteína Tirosina Quinases/genética , Degeneração Retiniana/etiologia , Degeneração Retiniana/fisiopatologia , Fatores de Tempo , Transgenes/genética , c-Mer Tirosina Quinase
9.
Invest Ophthalmol Vis Sci ; 48(12): 5756-66, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18055829

RESUMO

PURPOSE: CNTF is a neuroprotective agent for retinal degenerations that can cause reduced electroretinogram (ERG) amplitudes. The goal of the present study was to determine the effects of intraocular delivery of CNTF on normal rat visual function. METHODS: Full-field scotopic and photopic ERG amplitudes and spatial frequency thresholds of the optokinetic response (OKR) of adult Long-Evans rats were measured before and after intravitreous injection of CNTF or subretinal delivery of adenoassociated virus-vectored CNTF (AAV-CNTF) into one eye. Visual acuity was also measured by using the Visual Water Task in AAV-CNTF-injected animals. Multiunit luminance thresholds were recorded in the superior colliculus after CNTF injection, and the eyes were examined histologically. RESULTS: In eyes injected with a high dose of CNTF, ERG amplitudes and OKR thresholds measured through CNTF-injected eyes were decreased by 45% to 70% within 6 days after injection. ERG amplitudes had begun to recover by 21 days, whereas OKR thresholds only began to recover after 56 days. Neither OKR thresholds nor ERG amplitudes fully recovered until 90 to 100 days. When measured in the superior colliculus at 2 weeks after CNTF injection, luminance thresholds were elevated by 0.35 log units. In AAV-CNTF-injected eyes, OKR thresholds, and visual acuity were reduced by approximately 50% for at least 6 months, and scotopic and photopic ERG b-waves were reduced by 30% to 50%. Photoreceptor loss occurred in the injected regions in some of the eyes. By contrast, comparison of dose-response analysis with a dose-response study of light damage strongly suggests that therapeutic doses of CNTF exist that do not suppress ERG responses. CONCLUSIONS: Intraocular delivery of CNTF, which preserves photoreceptors in animal models of retinal degeneration, impairs visual function in normal rats at very high doses, but not at lower doses that still provide protection from constant light damage.


Assuntos
Fator Neurotrófico Ciliar/toxicidade , Eletrorretinografia/efeitos dos fármacos , Nistagmo Optocinético/efeitos dos fármacos , Transtornos da Visão/induzido quimicamente , Acuidade Visual/efeitos dos fármacos , Animais , Fator Neurotrófico Ciliar/genética , Dependovirus/genética , Relação Dose-Resposta a Droga , Vetores Genéticos , Injeções , Luz/efeitos adversos , Células Fotorreceptoras de Vertebrados/efeitos da radiação , Lesões Experimentais por Radiação/etiologia , Lesões Experimentais por Radiação/prevenção & controle , Ratos , Ratos Long-Evans , Limiar Sensorial/efeitos dos fármacos , Colículos Superiores/efeitos dos fármacos , Corpo Vítreo
10.
Hum Gene Ther ; 18(10): 871-80, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17892416

RESUMO

The selective silencing of target genes in specific cell types by RNA interference (RNAi) represents a powerful approach both to gene therapy of dominantly active mutant alleles, and to the investigation of normal gene function in animal models in vivo. We established a simple and versatile in vitro method for screening the efficacy of DNA-based short hairpin RNAs (shRNAs), and identified a highly effective shRNA targeting basic fibroblast growth factor (bFGF), a gene thought to play important roles in endogenous neuroprotective responses in the rat retina. We used two viral vectors, based on lentivirus and adeno-associated virus (AAV), to deliver shRNAs and silence bFGF in retinal pigment epithelial cells in vivo. The AAV experiments made use of a "stabilized double-stranded" version of these vectors with rapid onset of gene expression. In the rat retinal pigment epithelium, shRNAs delivered by either vector reduced bFGF immunoreactivity to undetectable levels in transduced cells, whereas a nonfunctional control construct incorporating a two-base pair mutation had no measurable effect on bFGF expression. Silencing commenced within a few days after injection of virus and remained stable throughout the period of observation, as long as 60 days. Viral delivery of RNAi constructs offers a powerful and versatile approach for both gene therapy and the analysis of fundamental questions in retinal biology.


Assuntos
Fator 2 de Crescimento de Fibroblastos/genética , Fator 2 de Crescimento de Fibroblastos/metabolismo , Terapia Genética , Vetores Genéticos , Epitélio Pigmentado Ocular/metabolismo , RNA Interferente Pequeno/metabolismo , Animais , Linhagem Celular , Dependovirus/genética , Marcação de Genes , Lentivirus/genética , Epitélio Pigmentado Ocular/citologia , Interferência de RNA , RNA Interferente Pequeno/genética , Ratos
11.
Invest Ophthalmol Vis Sci ; 44(2): 826-38, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12556419

RESUMO

PURPOSE: To determine whether mice that are homozygous for a targeted disruption of the Mer receptor tyrosine kinase gene (mer(kd)) manifest a retinal dystrophy phenotype similar to RCS rats, which carry a mutation in the orthologous gene MERTK: METHODS: Eyes of mer(kd) and C57BL/6 wild-type (WT) mice were examined by light and electron microscopy, whole-eye rhodopsin measurement, and Ganzfeld electroretinography (ERG). RESULTS: The mer(kd) mice showed rapid, progressive degeneration of the photoreceptors (PRs). Features of the phenotype common to mer(kd) mice and RCS rats included the absence or near absence of phagosomes in the retinal pigment epithelium (RPE) at the peak of outer segment (OS) disc shedding, accumulation of debris and whorls of membranes at the RPE-OS interface, transient supernormal rhodopsin content and OS lengths, the presence of OS vacuoles beginning at early ages, and a relatively slow removal of pyknotic PR nuclei. Most PRs were missing, and OS debris was removed by approximately postnatal day (P)45. Scotopic ERG responses were lower than age-matched WT responses and declined with PR loss. Photopic responses were preserved better than scotopic responses, corresponding with preferential cone preservation as judged histologically. ERG amplitudes were usually unmeasurable beyond P40, although a small-amplitude scotopic threshold response (STR) could still be elicited at P253 in some mice when only scattered PR nuclei remained. CONCLUSIONS: Ablation of Mer function in mer(kd) mice results in a retinal phenotype almost identical with that of RCS rats. The similarity in phenotypes between the two rodent models suggests that an RPE phagocytic defect is a feature of all types of retinal degeneration caused by loss of function of Mer tyrosine kinase, perhaps including mutations in human MERTK.


Assuntos
Proteínas Tirosina Quinases/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Receptores Proteína Tirosina Quinases , Retina/ultraestrutura , Degeneração Retiniana/enzimologia , Degeneração Retiniana/patologia , Animais , Eletrorretinografia , Immunoblotting , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fagocitose , Fagossomos/patologia , Fenótipo , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas/genética , RNA Mensageiro/metabolismo , Retina/enzimologia , Rodopsina/metabolismo , c-Mer Tirosina Quinase
13.
Exp Eye Res ; 74(6): 719-35, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12126945

RESUMO

Past studies have shown that acute administration of ciliary neurotrophic factor (CNTF) can prolong the survival of retinal photoreceptor cells that have undergone phototoxic injury or that express gene mutations. Adenovirus-vectored CNTF has also been effective but for all of these treatments, the effect has been transient. On the other hand, adeno-associated virus-vectored minigenes offer considerable promise for long-term survival. The authors sought to provide long-term, CNTF-based protection of mouse photoreceptors expressing a dominant-negative point mutation in the rds gene by using recombinant adeno-associated virus (rAAV) to deliver minigenes that code for a secreted form of CNTF.Secreted CNTF, under control of a cytomegalovirus (CMV) or chick beta actin (CBA) promoter provided long-term, panretinal rescue of photoreceptors following single injections of rAAV vectors into the subretinal compartment. Rescue was much less effective and less reproducible when the vectors were placed in the vitreous compartment. However, there were unexpected side effects that appeared to be dose-related. One side effect was a change in rod photoreceptor nucleus phenotype, featuring an increase in euchromatin and an increase in nuclear size following subretinal injections but not intravitreal injections. These nuclear changes were panretinal when the putatively stronger CBA promoter was used but not panretinal when the CMV promoter was used. In the latter case, the nuclear changes were much more pronounced at the site of injection. Thus, chronic hyperstimulation of retinal cells with CNTF may up-regulate gene expression in photoreceptors. Based on current knowledge of retinal cell targets for CNTF, this effect may be indirect and may not represent direct stimulation of photoreceptors by CNTF.A second side effect was a paradoxical decrease in scotopic a- and b-wave amplitudes and a decrease in photopic b-wave amplitudes in the injected, rescued retina when compared to its contralateral, uninjected counterpart, in spite of the fact that these retinas had more photoreceptors than their untreated mates. The basis for these decreased ERG amplitudes may be related to changes in gene expression. The mechanisms for these side effects and proper doses of CNTF administration should be determined before human clinical trials are considered for the amelioration of inherited retinal degenerations with CNTF.


Assuntos
Fator Neurotrófico Ciliar/fisiologia , Terapia Genética/métodos , Proteínas de Filamentos Intermediários/genética , Glicoproteínas de Membrana , Proteínas do Tecido Nervoso/genética , Mutação Puntual , Degeneração Retiniana/terapia , Adenoviridae/genética , Animais , Fator Neurotrófico Ciliar/genética , Eletrorretinografia , Proteínas do Olho/genética , Vetores Genéticos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Periferinas , Células Fotorreceptoras de Vertebrados/patologia , Retina/fisiopatologia , Degeneração Retiniana/patologia , Degeneração Retiniana/fisiopatologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
14.
J Biol Chem ; 277(19): 17016-22, 2002 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-11861639

RESUMO

The RCS rat is a widely studied model of recessively inherited retinal degeneration. The genetic defect, known as rdy (retinal dystrophy), results in failure of the retinal pigment epithelium (RPE) to phagocytize shed photoreceptor outer segment membranes. We previously used positional cloning and in vivo genetic complementation to demonstrate that Mertk is the gene for rdy. We have now used a rat primary RPE cell culture system to demonstrate that the RPE is the site of action of Mertk and to obtain functional evidence for a key role of Mertk in RPE phagocytosis. We found that Mertk protein is absent from RCS, but not wild-type, tissues and cultured RPE cells. Delivery of rat Mertk to cultured RCS RPE cells by means of a recombinant adenovirus restored the cells to complete phagocytic competency. Infected RCS RPE cells ingested exogenous outer segments to the same extent as wild-type RPE cells, but outer segment binding was unaffected. Mertk protein progressively co-localized with outer segment material during phagocytosis by primary RPE cells, and activated Mertk accumulated during the early stages of phagocytosis by RPE-J cells. We conclude that Mertk likely functions directly in the RPE phagocytic process as a signaling molecule triggering outer segment ingestion.


Assuntos
Fagocitose , Epitélio Pigmentado Ocular/citologia , Proteínas Proto-Oncogênicas , Receptores Proteína Tirosina Quinases/fisiologia , Segmento Externo da Célula Bastonete/metabolismo , Adenoviridae/genética , Animais , Células Cultivadas , Eletroforese em Gel de Poliacrilamida , Glicosilação , Immunoblotting , Microscopia de Fluorescência , Faloidina/metabolismo , Testes de Precipitina , Ligação Proteica , Ratos , Receptores Proteína Tirosina Quinases/metabolismo , Proteínas Recombinantes/metabolismo , Sefarose/metabolismo , Transdução de Sinais , c-Mer Tirosina Quinase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA