Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Elife ; 112022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35749159

RESUMO

Bending of cilia and flagella occurs when axonemal dynein molecules on one side of the axoneme produce force and move toward the microtubule (MT) minus end. These dyneins are then pulled back when the axoneme bends in the other direction, meaning oscillatory back and forth movement of dynein during repetitive bending of cilia/flagella. There are various factors that may regulate the dynein activity, e.g. the nexin-dynein regulatory complex, radial spokes, and central apparatus. In order to understand the basic mechanism of dynein's oscillatory movement, we constructed a simple model system composed of MTs, outer-arm dyneins, and crosslinks between the MTs made of DNA origami. Electron microscopy (EM) showed pairs of parallel MTs crossbridged by patches of regularly arranged dynein molecules bound in two different orientations, depending on which of the MTs their tails bind to. The oppositely oriented dyneins are expected to produce opposing forces when the pair of MTs have the same polarity. Optical trapping experiments showed that the dynein-MT-DNA-origami complex actually oscillates back and forth after photolysis of caged ATP. Intriguingly, the complex, when held at one end, showed repetitive bending motions. The results show that a simple system composed of ensembles of oppositely oriented dyneins, MTs, and inter-MT crosslinkers, without any additional regulatory structures, has an intrinsic ability to cause oscillation and repetitive bending motions.


Assuntos
Chlamydomonas reinhardtii , Dineínas , Dineínas do Axonema/metabolismo , Axonema/metabolismo , Chlamydomonas reinhardtii/metabolismo , DNA/metabolismo , Dineínas/metabolismo , Flagelos/fisiologia , Microtúbulos/metabolismo , Movimento/fisiologia
2.
Sci Rep ; 7: 39902, 2017 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-28079116

RESUMO

Human mutations in KATNB1 (p80) cause severe congenital cortical malformations, which encompass the clinical features of both microcephaly and lissencephaly. Although p80 plays critical roles during brain development, the underlying mechanisms remain predominately unknown. Here, we demonstrate that p80 regulates microtubule (MT) remodeling in combination with NuMA (nuclear mitotic apparatus protein) and cytoplasmic dynein. We show that p80 shuttles between the nucleus and spindle pole in synchrony with the cell cycle. Interestingly, this striking feature is shared with NuMA. Importantly, p80 is essential for aster formation and maintenance in vitro. siRNA-mediated depletion of p80 and/or NuMA induced abnormal mitotic phenotypes in cultured mouse embryonic fibroblasts and aberrant neurogenesis and neuronal migration in the mouse embryonic brain. Importantly, these results were confirmed in p80-mutant harboring patient-derived induced pluripotent stem cells and brain organoids. Taken together, our findings provide valuable insights into the pathogenesis of severe microlissencephaly, in which p80 and NuMA delineate a common pathway for neurogenesis and neuronal migration via MT organization at the centrosome/spindle pole.


Assuntos
Adenosina Trifosfatases/metabolismo , Fibroblastos/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Katanina/metabolismo , Microtúbulos/metabolismo , Malformações do Sistema Nervoso/metabolismo , Neurônios/fisiologia , Proteínas Nucleares/metabolismo , Adenosina Trifosfatases/genética , Animais , Proteínas de Ciclo Celular , Dineínas/metabolismo , Células HeLa , Humanos , Katanina/genética , Camundongos , Camundongos Endogâmicos , Mitose/genética , Mutação/genética , Malformações do Sistema Nervoso/genética , Neurogênese/genética , Proteínas Nucleares/genética , RNA Interferente Pequeno/genética
3.
Cell ; 143(2): 275-87, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20946985

RESUMO

Assembled actin filaments support cellular signaling, intracellular trafficking, and cytokinesis. ATP hydrolysis triggered by actin assembly provides the structural cues for filament turnover in vivo. Here, we present the cryo-electron microscopic (cryo-EM) structure of filamentous actin (F-actin) in the presence of phosphate, with the visualization of some α-helical backbones and large side chains. A complete atomic model based on the EM map identified intermolecular interactions mediated by bound magnesium and phosphate ions. Comparison of the F-actin model with G-actin monomer crystal structures reveals a critical role for bending of the conserved proline-rich loop in triggering phosphate release following ATP hydrolysis. Crystal structures of G-actin show that mutations in this loop trap the catalytic site in two intermediate states of the ATPase cycle. The combined structural information allows us to propose a detailed molecular mechanism for the biochemical events, including actin polymerization and ATPase activation, critical for actin filament dynamics.


Assuntos
Actinas/química , Músculo Esquelético/química , Fosfatos/metabolismo , Actinas/ultraestrutura , Trifosfato de Adenosina/metabolismo , Animais , Microscopia Crioeletrônica , Cristalografia por Raios X , Modelos Moleculares , Músculo Esquelético/metabolismo , Coelhos
4.
Cytoskeleton (Hoboken) ; 67(7): 466-76, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20564746

RESUMO

Outer arm dynein (OAD) in cilia and flagella contains two to three nonidentical heavy chains (HCs) that possess motor activity. In Chlamydomonas, flagellar OAD contains three HCs, alpha-, beta-, and gamma-HCs, each appearing to have a distinct role. To determine the precise molecular mechanism of their function, cross-sectional electron micrographs of wild-type and single HC-disruption mutants were compared and statistically analyzed. While the alpha-HC mutant displayed an OAD of lower density, which was attributed to a lack of alpha-HC, the OAD of beta- and gamma-HC mutants not only lacked the corresponding HC, but was also significantly affected in its structure, particularly with respect to the localization of alpha-HC. The lack of beta-HC induced mislocalization of alpha-HC, while a disruption of the gamma-HC gene resulted in the synchronized movement of alpha-HC and beta-HC in the manners for stacking. Interestingly, using cryo-electron microscopy, purified OADs were typically observed consisting of two stacked heads and an independent single head, which presumably corresponded to gamma-HC. This conformation is different from previous reports in which the three HCs displayed a stacked form in flagella observed by cryo-electron tomography and a bouquet structure on mica in deep-etch replica images. These results suggest that gamma-HC supports the tight stacking arrangement of inter or intra alpha-/beta-HC to facilitate the proper functioning of OAD.


Assuntos
Chlamydomonas reinhardtii/metabolismo , Dineínas/metabolismo , Proteínas de Plantas/metabolismo , Axonema/ultraestrutura , Chlamydomonas reinhardtii/ultraestrutura , Cromatografia Líquida de Alta Pressão , Microscopia Crioeletrônica , Dineínas/isolamento & purificação , Dineínas/ultraestrutura , Modelos Biológicos , Mutação/genética , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/ultraestrutura
5.
Proc Natl Acad Sci U S A ; 105(50): 19702-7, 2008 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-19064920

RESUMO

Dynein is a microtubule motor that powers motility of cilia and flagella. There is evidence that the relative sliding of the doublet microtubules is due to a conformational change in the motor domain that moves a microtubule bound to the end of an extension known as the stalk. A predominant model for the movement involves a rotation of the head domain, with its stalk, toward the microtubule plus end. However, stalks bound to microtubules have been difficult to observe. Here, we present the clearest views so far of stalks in action, by observing sea urchin, outer arm dynein molecules bound to microtubules, with a new method, "cryo-positive stain" electron microscopy. The dynein molecules in the complex were shown to be active in in vitro motility assays. Analysis of the electron micrographs shows that the stalk angles relative to microtubules do not change significantly between the ADP.vanadate and no-nucleotide states, but the heads, together with their stalks, shift with respect to their A-tubule attachments. Our results disagree with models in which the stalk acts as a lever arm to amplify structural changes. The observed movement of the head and stalk relative to the tail indicates a new plausible mechanism, in which dynein uses its stalk as a grappling hook, catching a tubulin subunit 8 nm ahead and pulling on it by retracting a part of the tail (linker).


Assuntos
Dineínas/química , Microtúbulos/química , Difosfato de Adenosina/metabolismo , Animais , Chlamydomonas/enzimologia , Microscopia Crioeletrônica , Dineínas/genética , Dineínas/ultraestrutura , Microtúbulos/ultraestrutura , Movimento (Física) , Mutação , Conformação Proteica , Strongylocentrotus/enzimologia
6.
Eukaryot Cell ; 7(7): 1136-45, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18487347

RESUMO

The outer dynein arm of Chlamydomonas flagella contains three heavy chains (alpha, beta, and gamma), each of which exhibits motor activity. How they assemble and cooperate is of considerable interest. Here we report the isolation of a novel mutant, oda2-t, whose gamma heavy chain is truncated at about 30% of the sequence. While the previously isolated gamma chain mutant oda2 lacks the entire outer arm, oda2-t retains outer arms that contain alpha and beta heavy chains, suggesting that the N-terminal sequence (corresponding to the tail region) is necessary and sufficient for stable outer-arm assembly. Thin-section electron microscopy and image analysis localize the gamma heavy chain to a basal region of the outer-arm image in the axonemal cross section. The motility of oda2-t is lower than that of the wild type and oda11 (lacking the alpha heavy chain) but higher than that of oda2 and oda4-s7 (lacking the motor domain of the beta heavy chain). Thus, the outer-arm dynein lacking the gamma heavy-chain motor domain is partially functional. The availability of mutants lacking individual heavy chains should greatly facilitate studies on the structure and function of the outer-arm dynein.


Assuntos
Chlamydomonas/enzimologia , Dineínas/metabolismo , Flagelos/enzimologia , Mutação , Proteínas de Protozoários/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Animais , Western Blotting , Chlamydomonas/química , Chlamydomonas/genética , Chlamydomonas/fisiologia , Dineínas/química , Dineínas/genética , Dineínas/ultraestrutura , Flagelos/química , Flagelos/genética , Flagelos/fisiologia , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/ultraestrutura
7.
Extremophiles ; 11(2): 225-35, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17072688

RESUMO

We conducted a comparative analysis of the effects of beryllium fluoride (BeFx) on protein folding mediated by the alpha- and beta-subunit homooligomers (alpha16mer or beta16mer) from the hyperthermophilic archaeum Thermococcus strain KS-1. BeFx inhibited the ATPase activities of both alpha16mer and beta16mer with equal efficiency. This indicated that BeFx replaces the gamma-phosphate of chaperonin-bound ATP, thereby forming a stable chaperonin-ADP-BeFx complex. In the presence of ATP and BeFx, both of the two chaperonin subunits mediated green fluorescent protein (GFP) folding. Gel filtration chromatography revealed that the refolded GFP was retained by both chaperonins. Protease digestion and electron microscopic analyses showed that both chaperonin-ADP-BeFx complexes of the two subunits adopted a symmetric closed conformation with the built-in lids of both rings closed and that protein folding took place in their central cavities. These data indicated that basic protein folding mechanisms of alpha16mer and beta16mer are likely similar although there were some apparent differences. While beta16mer-mediated GFP refolding in the presence of ATP-BeFx that proceeded more rapidly than in the presence of ATP alone and reached a twofold higher plateau than that achieved with AMP-PNP, the folding mediated by the alpha16mer that proceeded with much lower yields. A mutant of alpha16mer, trapalpha, which traps the unfolded and partially folded substrate protein, did not affect the ATP-BeFx-dependent GFP folding by beta16mer but it suppressed that mediated by alpha16mer to the level of spontaneous folding. These results suggested that beta16mer differed from the alpha16mer in nucleotide binding affinity or the rate of nucleotide hydrolysis.


Assuntos
Proteínas Arqueais/química , Berílio/química , Chaperoninas/química , Fluoretos/química , Dobramento de Proteína , Thermococcus/química , Difosfato de Adenosina/química , Trifosfato de Adenosina/química , Proteínas de Fluorescência Verde/química
8.
J Biol Chem ; 280(50): 41412-20, 2005 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-16236707

RESUMO

Ciliary and flagellar axonemes contain multiple inner arm dyneins of which the functional difference is largely unknown. In this study, a Chlamydomonas mutant, ida9, lacking inner arm dynein c was isolated and shown to carry a mutation in the DHC9 dynein heavy chain gene. The cDNA sequence of DHC9 was determined, and its information was used to show that >80% of it is lost in the mutant. Electron microscopy and image analysis showed that the ida9 axoneme lacked electron density near the base of the S2 radial spoke, indicating that dynein c localizes to this site. The mutant ida9 swam only slightly slower than the wild type in normal media. However, swimming velocity was greatly reduced when medium viscosity was modestly increased. Thus, dynein c in wild type axonemes must produce a significant force when flagella are beating in viscous media. Because motility analyses in vitro have shown that dynein c is the fastest among all the inner arm dyneins, we can regard this dynein as a fast yet powerful motor.


Assuntos
Axônios/metabolismo , Chlamydomonas/genética , Dineínas/química , Dineínas/fisiologia , Flagelos/metabolismo , Mutação , Subunidades Proteicas/química , Subunidades Proteicas/fisiologia , Sequência de Aminoácidos , Animais , Southern Blotting , Chlamydomonas reinhardtii , Cílios/metabolismo , DNA Complementar/metabolismo , Relação Dose-Resposta a Droga , Dineínas/metabolismo , Elétrons , Eletroforese , Processamento de Imagem Assistida por Computador , Microscopia Eletrônica , Microtúbulos/química , Modelos Biológicos , Modelos Genéticos , Proteínas Motores Moleculares/química , Dados de Sequência Molecular , Movimento , Ligação Proteica , Subunidades Proteicas/metabolismo , Análise de Sequência de DNA , Relação Estrutura-Atividade , Viscosidade
9.
Protein Sci ; 14(2): 341-50, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15659368

RESUMO

The structure of a chaperonin caging a substrate protein is not quite clear. We made engineered group II chaperonins fused with a guest protein and analyzed their structural and functional features. Thermococcus sp. KS-1 chaperonin alpha-subunit (TCP) which forms an eightfold symmetric double-ring structure was used. Expression plasmids were constructed which carried two or four TCP genes ligated head to tail in phase and a target protein gene at the 3' end of the linked TCP genes. Electron microscopy showed that the expressed gene products with the molecular sizes of ~120 kDa (di-TCP) and ~230 kDa (tetra-TCP) formed double-ring complexes similar to those of wild-type TCP. The tetra-TCP retained ATPase activity and its thermostability was significantly higher than that of the wild type. A 260-kDa fusion protein of tetra-TCP and green fluorescent protein (GFP, 27 kDa) was able to form the double-ring complexes with green fluorescence. Image analyses indicated that the GFP moiety of tetra-TCP/GFP fusion protein was accommodated in the central cavity, and tetra-TCP/GFP formed the closed-form similar to that crystallographically resolved in group II chaperonins. Furthermore, it was suggested that caging GFP expanded the cavity around the bottom. Using this tetra-TCP fusion strategy, two virus structural proteins (21-25 kDa) toxic to host cells or two antibody fragments (25-36 kDa) prone to aggregate were well expressed in the soluble fraction of Escherichia coli. These fusion products also assembled to double-ring complexes, suggesting encapsulation of the guest proteins. The antibody fragments liberated by site-specific protease digestion exhibited ligand-binding activities.


Assuntos
Chaperoninas/química , Engenharia de Proteínas/métodos , Proteômica/métodos , Adenosina Trifosfatases/química , Trifosfato de Adenosina/química , Sequência de Aminoácidos , Proteínas Arqueais/química , Sequência de Bases , Cromatografia em Gel , Cristalografia por Raios X , Escherichia coli/metabolismo , Vetores Genéticos , Proteínas de Fluorescência Verde/química , Processamento de Imagem Assistida por Computador , Imunoprecipitação , Ligantes , Magnésio/química , Microscopia Eletrônica , Modelos Moleculares , Dados de Sequência Molecular , Plasmídeos/metabolismo , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Proteômica/instrumentação , Proteínas Recombinantes de Fusão/química , Temperatura , Thermococcus/metabolismo , Fatores de Tempo
10.
J Mol Biol ; 315(1): 73-85, 2002 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-11771967

RESUMO

Group II chaperonins of archaea and eukaryotes are distinct from group I chaperonins of bacteria. Whereas group I chaperonins require the co-chaperonin Cpn-10 or GroES for protein folding, no co-chaperonin has been known for group II. The protein folding mechanism of group II chaperonins is not yet clear. To understand this mechanism, we examined protein refolding by the recombinant alpha or beta-subunit chaperonin homo-oligomer (alpha16mer and beta16mer) from a hyperthermoplilic archaeum, Thermococcus strain KS-1, using a model substrate, green fluorescent protein (GFP). The alpha16mer and beta16mer captured the non-native GFP and promoted its refolding without any co-chaperonin in an ATP dependent manner. A non-hydrolyzable ATP analog, AMP-PNP, induced the GFP refolding mediated by beta16mer but not by the alpha16mer. A mutant alpha-subunit chaperonin homo-oligomer (trap-alpha) could capture the non-native protein but lacked the ability to refold it. Although trap-alpha suppressed ATP-dependent refolding of GFP mediated by alpha16mer or beta16mer, it did not affect the AMP-PNP-dependent refolding. This indicated that the GFP refolding mediated by beta16mer with AMP-PNP was not accessible to the trap-alpha. Gel filtration chromatography and a protease protection experiment revealed that this refolded GFP, in the presence of AMP-PNP, was associated with beta16mer. After the completion of GFP refolding mediated by beta16mer with AMP-PNP, addition of ATP induced an additional refolding of GFP. Furthermore, the beta16mer preincubated with AMP-PNP showed the ability to capture the non-native GFP. These suggest that AMP-PNP induced one of two chaperonin rings (cis-ring) to close and induced protein refolding in this ring, and that the other ring (trans-ring) could capture the unfolded GFP which was refolded by adding ATP. The present data indicate that, in the group II chaperonin of Thermococcus strain KS-1, the protein folding proceeds in its cis-ring in an ATP-dependent fashion without any co-chaperonin.


Assuntos
Proteínas Arqueais/metabolismo , Chaperoninas/classificação , Chaperoninas/metabolismo , Glicoproteínas de Membrana , Dobramento de Proteína , Thermococcus/química , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/metabolismo , Adenilil Imidodifosfato/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/classificação , Proteínas Arqueais/ultraestrutura , Proteínas de Ligação ao Cálcio/metabolismo , Chaperonina 10/química , Chaperonina 10/fisiologia , Chaperoninas/química , Chaperoninas/ultraestrutura , Cromatografia em Gel , Cromatografia Líquida de Alta Pressão , Citrato (si)-Sintase/química , Citrato (si)-Sintase/metabolismo , Proteínas de Fluorescência Verde , Proteínas Luminescentes/química , Proteínas Luminescentes/metabolismo , Microscopia Eletrônica , Modelos Biológicos , Estrutura Quaternária de Proteína , Subunidades Proteicas , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Peptídeos/metabolismo , Serina Endopeptidases/metabolismo , Thermococcus/genética , Termolisina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA