Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Virol ; 95(16): e0240120, 2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34076480

RESUMO

Entecavir (ETV) is a widely used anti-hepatitis B virus (HBV) drug. However, the emergence of resistant mutations in HBV reverse transcriptase (RT) results in treatment failure. To understand the mechanism underlying the development of ETV resistance by HBV RT, we analyzed the L180M, M204V, and L180M/M204V mutants using a combination of biochemical and structural techniques. ETV-triphosphate (ETV-TP) exhibited competitive inhibition with dGTP in both wild-type (wt) RT and M204V RT, as observed using Lineweaver-Burk plots. In contrast, RT L180M or L180M/M204V did not fit either competitive, uncompetitive, noncompetitive, or typical mixed inhibition, although ETV-TP was a competitive inhibitor of dGTP. Crystallography of HIV RTY115F/F116Y/Q151M/F160M/M184V, mimicking HBV RT L180M/M204V, showed that the F115 bulge (F88 in HBV RT) caused by the F160M mutation induced deviated binding of dCTP from its normal tight binding position. Modeling of ETV-TP on the deviated dCTP indicated that a steric clash could occur between ETV-TP methylene and the 3'-end nucleoside ribose. ETV-TP is likely to interact primarily with HBV RT M171 prior to final accommodation at the deoxynucleoside triphosphate (dNTP) binding site (Y. Yasutake, S. Hattori, H. Hayashi, K. Matsuda, et al., Sci Rep 8:1624, 2018, https://doi.org/10.1038/s41598-018-19602-9). Therefore, in HBV RT L180M/M204V, ETV-TP may be stuck at M171, a residue that is conserved in almost all HBV isolates, leading to the strange inhibition pattern observed in the kinetic analysis. Collectively, our results provide novel insights into the mechanism of ETV resistance of HBV RT caused by L180M and M204V mutations. IMPORTANCE HBV infects 257 million people in the world, who suffer from elevated risks of liver cirrhosis and cancer. ETV is one of the most potent anti-HBV drugs, and ETV resistance mutations in HBV RT have been extensively studied. Nevertheless, the mechanisms underlying ETV resistance have remained elusive. We propose an attractive hypothesis to explain ETV resistance and effectiveness using a combination of kinetic and structural analyses. ETV is likely to have an additional interaction site, M171, beside the dNTP pocket of HBV RT; this finding indicates that nucleos(t)ide analogues (NAs) recognizing multiple interaction sites within RT may effectively inhibit the enzyme. Modification of ETV may render it more effective and enable the rational design of efficient NA inhibitors.


Assuntos
Farmacorresistência Viral/genética , Guanina/análogos & derivados , Vírus da Hepatite B/efeitos dos fármacos , DNA Polimerase Dirigida por RNA/química , Inibidores da Transcriptase Reversa/farmacologia , Sítios de Ligação , Cristalografia por Raios X , Nucleotídeos de Desoxicitosina/metabolismo , Nucleotídeos de Desoxiguanina/metabolismo , Guanina/metabolismo , Guanina/farmacologia , Transcriptase Reversa do HIV/química , Transcriptase Reversa do HIV/genética , Transcriptase Reversa do HIV/metabolismo , Vírus da Hepatite B/química , Vírus da Hepatite B/enzimologia , Concentração Inibidora 50 , Cinética , Lamivudina/metabolismo , Lamivudina/farmacologia , Mutação , DNA Polimerase Dirigida por RNA/genética , DNA Polimerase Dirigida por RNA/metabolismo , Inibidores da Transcriptase Reversa/metabolismo , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo
2.
Int J Biol Macromol ; 167: 578-586, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33279561

RESUMO

Cholesterol esterase (Che) from Burkholderia stabilis (BsChe) is a homolog of well-characterized and industrially relevant bacterial triacylglycerol lipases (Lips). BsChe is a rare bacterial Lip enzyme that exhibits practical Che activity and is currently used in clinical applications to determine total serum cholesterol levels. To investigate the sterol specificity of BsChe, we determined the X-ray structure of BsChe. We discovered a local structural change in the active-site cleft, which might be related to substrate binding and product release. We also performed molecular docking studies by using the X-ray models of BsChe and cholesterol linoleate (CLL), the most favorable substrate for BsChe. The results showed that the sterol moieties of reasonable CLL docking poses localized to a specific active-site cleft surface formed by Leu266 and Ile287, which are unconserved among Burkholderia Lip homologs. Site-directed mutagenesis identified these residues as essential for the Che activity of BsChe, and Leu or Ile substitution conferred marked Che activity to Burkholderia Lips. In particular, Burkholderia cepacia and Burkholderia ubonensis Lips with the V266L/L287I double mutation exhibited ~50-fold and 500-fold higher Che activities than those of the wild-type enzymes, respectively. These results provide new insights into the substrate-binding mechanisms and selectivities of bacterial Lips.


Assuntos
Burkholderia/enzimologia , Esterol Esterase/química , Esterol Esterase/metabolismo , Esteróis/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Burkholderia/genética , Domínio Catalítico , Cristalografia por Raios X , Modelos Moleculares , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Esterol Esterase/genética , Especificidade por Substrato
3.
Cells ; 9(2)2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-32102436

RESUMO

Konjac ceramide (kCer) is a plant-type ceramide composed of various long-chain bases and a-hydroxyl fatty acids. The presence of d4t,8t-sphingadienine is essential for semaphorin 3A (Sema3A)-like activity. Herein, we examined the three neuropilin 1 (Nrp1) domains (a1a2, b1b2, or c), and found that a1a2 binds to d4t,8t-kCer and possesses Sema3A-like activity. kCer binds to Nrp1 with a weak affinity of mM dissociation constant (Kd). We wondered whether bovine serum albumin could influence the ligand-receptor interaction that a1a2 has with a single high affinity binding site for kCer (Kd in nM range). In the present study we demonstrated the influence of bovine serum albumin. Thermal denaturation indicates that the a1a2 domain may include intrinsically disordered region (IDR)-like flexibility. A potential interaction site on the a1 module was explored by molecular docking, which revealed a possible Nrp1 activation mechanism, in which kCer binds to Site A close to the Sema3A-binding region of the a1a2 domain. The a1 module then accesses a2 as the IDR-like flexibility becomes ordered via kCer-induced protein rigidity of a1a2. This induces intramolecular interaction between a1 and a2 through a slight change in protein secondary structure.


Assuntos
Glucosilceramidas/farmacologia , Neuropilina-1/metabolismo , Sítios de Ligação , Linhagem Celular Tumoral , Glucosilceramidas/química , Humanos , Imunoprecipitação , Modelos Moleculares , Neuropilina-1/química , Domínios Proteicos , Semaforina-3A/metabolismo
4.
Sci Rep ; 7(1): 8946, 2017 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-28827579

RESUMO

Understanding the molecular mechanisms of bacterial antibiotic resistance will help prepare against further emergence of multi-drug resistant strains. MacQ is an enzyme responsible for the multi-drug resistance of Acidovorax sp. strain MR-S7. MacQ has acylase activity against both N-acylhomoserine lactones (AHLs), a class of signalling compounds involved in quorum sensing, and ß-lactam antibiotics. Thus, MacQ is crucial as a quencher of quorum sensing as well as in conferring antibiotic resistance in Acidovorax. Here, we report the X-ray structures of MacQ in ligand-free and reaction product complexes. MacQ forms a 170-kDa capsule-shaped molecule via face-to-face interaction with two heterodimers consisting of an α-chain and a ß-chain, generated by the self-cleaving activity of a precursor polypeptide. The electron density of the spacer polypeptide in the hollow of the molecule revealed the close orientation of the peptide-bond atoms of Val20SP-Gly21SP to the active-site, implying a role of the residues in substrate binding. In mutational analyses, uncleaved MacQ retained degradation activity against both AHLs and penicillin G. These results provide novel insights into the mechanism of self-cleaving maturation and enzymatic function of N-terminal nucleophile hydrolases.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Comamonadaceae/enzimologia , Percepção de Quorum , Amidoidrolases/química , Amidoidrolases/genética , Amidoidrolases/metabolismo , Proteínas de Bactérias/genética , Sítios de Ligação , Domínio Catalítico , Comamonadaceae/química , Comamonadaceae/genética , Cristalografia por Raios X , Regulação Bacteriana da Expressão Gênica , Interações Microbianas , Modelos Moleculares , Mutação , Multimerização Proteica , Estrutura Secundária de Proteína , Resistência beta-Lactâmica
5.
Acta Crystallogr D Biol Crystallogr ; 67(Pt 11): 945-56, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22101821

RESUMO

The nucleoside kinase (NK) from the mesophilic Gram-negative bacterium Burkholderia thailandensis (BthNK) is a member of the phosphofructokinase B (Pfk-B) family and catalyzes the Mg(2+)- and ATP-dependent phosphorylation of a broad range of nucleosides such as inosine (INO), adenosine (ADO) and mizoribine (MZR). BthNK is currently used in clinical practice to measure serum MZR levels. Here, crystal structures of BthNK in a ligand-free form and in complexes with INO, INO-ADP, MZR-ADP and AMP-Mg(2+)-AMP are described. The typical homodimeric architecture of Pfk-B enzymes was detected in three distinct conformational states: an asymmetric dimer with one subunit in an open conformation and the other in a closed conformation (the ligand-free form), a closed conformation (the binary complex with INO) and a fully closed conformation (the other ternary and quaternary complexes). The previously unreported fully closed structures suggest the possibility that Mg(2+) might directly interact with the ß- and γ-phosphates of ATP to maintain neutralization of the negative charge throughout the reaction. The nucleoside-complex structures also showed that the base moiety of the bound nucleoside is partly exposed to the solvent, thereby enabling the recognition of a wide range of nucleoside bases. Gly170 is responsible for the solvent accessibility of the base moiety and is assumed to be a key residue for the broad nucleoside recognition of BthNK. Remarkably, the G170Q mutation increases the specificity of BthNK for ADO. These findings provide insight into the conformational dynamics, catalytic mechanism and nucleoside selectivity of BthNK and related enzymes.


Assuntos
Proteínas de Bactérias/química , Burkholderia/enzimologia , Imunossupressores/uso terapêutico , Fosfotransferases/química , Ribonucleosídeos/uso terapêutico , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Doenças Autoimunes/tratamento farmacológico , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Burkholderia/genética , Cristalização , Rejeição de Enxerto/tratamento farmacológico , Humanos , Imunossupressores/química , Imunossupressores/metabolismo , Magnésio/química , Magnésio/metabolismo , Mutagênese Sítio-Dirigida , Mutação/genética , Fosfotransferases/genética , Fosfotransferases/metabolismo , Conformação Proteica , Ribonucleosídeos/química , Ribonucleosídeos/metabolismo , Especificidade por Substrato/genética
6.
Proteins ; 68(2): 446-57, 2007 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-17492665

RESUMO

In the thermophilic archaeon Sulfolobus tokodaii, there are two genes homologous to PduO-type ATP:cob(I)alamin adenosyltransferase, ST1454 and ST2180. To address the structure and function of these two sequence-related proteins from one organism, we prepared them by using the Escherichia coli expression system and analyzed them by immunoblotting, matrix-assisted laser desorption ionization-time-of-flight mass spectroscopy, circular dichroism spectrometry, ATP:cobalamin adenosyltransferase assay, and X-ray crystallography. Immunoblotting and matrix-assisted laser desorption ionization-time-of-flight mass spectroscopy analyses showed that both these proteins are expressed in S. tokodaii cells as soluble proteins and are spontaneously digested at the N-terminal region. ATP:cob(I)alamin adenosyltransferase activity was detected for ST1454 but not for ST2180. ST2180 reduced the concentration of cob(I)alamin, suggesting that ST2180 might recognize cob(I)alamin as a ligand. The secondary structure of ST1454 was retained even in 7 M guanidine hydrochroride, whereas that of ST2180 was melted in 4.5 M guanidine hydrochloride. The X-ray crystal structural analysis revealed that the proteins shared a common structure: a trimer of five-helix bundles with a clockwise kink. There is a pocket surrounded by highly conserved residues, in which a polypropylene glycol 400 in the crystal structure of ST1454 was captured, suggesting that it is an active site. Structural comparison between these two proteins showed the difference in the number of ion pairs around the proposed active site. On the basis of these results, we propose that ST1454 and ST2180 have related but distinct functions.


Assuntos
Alquil e Aril Transferases/química , Proteínas Arqueais/química , Sulfolobus/enzimologia , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/isolamento & purificação , Proteínas Arqueais/genética , Proteínas Arqueais/isolamento & purificação , Dicroísmo Circular , Primers do DNA , Modelos Moleculares , Reação em Cadeia da Polimerase , Conformação Proteica , Difração de Raios X
7.
J Biol Chem ; 279(31): 32957-67, 2004 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-15169774

RESUMO

To study how oligomerization may contribute to the thermostability of archaeon proteins, we focused on a hexameric protein, protein L-isoaspartyl-O-methyltransferase from Sulfolobus tokodaii (StoPIMT). The crystal structure shows that StoPIMT has a distinctive hexameric structure composed of monomers consisting of two domains: an S-adenosylmethionine-dependent methyltransferase fold domain and a C-terminal alpha-helical domain. The hexameric structure includes three interfacial contact regions: major, minor, and coiled-coil. Several C-terminal deletion mutants were constructed and characterized. The hexameric structure and thermostability were retained when the C-terminal alpha-helical domain (Tyr(206)-Thr(231)) was deleted, suggesting that oligomerization via coiled-coil association using the C-terminal alpha-helical domains did not contribute critically to hexamerization or to the increased thermostability of the protein. Deletion of three additional residues located in the major contact region, Tyr(203)-Asp(204)-Asp(205), led to a significant decrease in hexamer stability and chemico/thermostability. Although replacement of Thr(146) and Asp(204), which form two hydrogen bonds in the interface in the major contact region, with Ala did not affect hexamer formation, these mutations led to a significant decrease in thermostability, suggesting that two residues in the major contact region make significant contributions to the increase in stability of the protein via hexamerization. These results suggest that cooperative hexamerization occurs via interactions of "hot spot" residues and that a couple of interfacial hot spot residues are responsible for enhancing thermostability via oligomerization.


Assuntos
Archaea/metabolismo , Proteína D-Aspartato-L-Isoaspartato Metiltransferase/química , Sulfolobus/metabolismo , Sequência de Aminoácidos , Ácido Aspártico/química , Varredura Diferencial de Calorimetria , Dicroísmo Circular , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Deleção de Genes , Vetores Genéticos , Guanidina/química , Ligação de Hidrogênio , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , S-Adenosilmetionina/química , Homologia de Sequência de Aminoácidos , Temperatura , Treonina/química , Tirosina/química , Valina/química , Difração de Raios X
8.
Structure ; 10(12): 1637-48, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12467571

RESUMO

NADP(+)-dependent isocitrate dehydrogenase is a member of the beta-decarboxylating dehydrogenase family and catalyzes the oxidative decarboxylation reaction from 2R,3S-isocitrate to yield 2-oxoglutarate and CO(2) in the Krebs cycle. Although most prokaryotic NADP(+)-dependent isocitrate dehydrogenases (IDHs) are homodimeric enzymes, the monomeric IDH with a molecular weight of 80-100 kDa has been found in a few species of bacteria. The 1.95 A crystal structure of the monomeric IDH revealed that it consists of two distinct domains, and its folding topology is related to the dimeric IDH. The structure of the large domain repeats a motif observed in the dimeric IDH. Such a fusional structure by domain duplication enables a single polypeptide chain to form a structure at the catalytic site that is homologous to the dimeric IDH, the catalytic site of which is located at the interface of two identical subunits.


Assuntos
Isocitrato Desidrogenase/química , Sequência de Aminoácidos , Azotobacter vinelandii/enzimologia , Catálise , Dimerização , Isocitrato Desidrogenase/metabolismo , Manganês/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , NADP/metabolismo , Oxirredução , Conformação Proteica , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA