Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
CPT Pharmacometrics Syst Pharmacol ; 12(11): 1591-1601, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37771203

RESUMO

Dose-response analysis is often applied to the quantification of drug-effect especially for slowly responding disease end points where a comparison is made across dose levels after a particular period of treatment. It has long been recognized that exposure - response is more appropriate than dose-response. However, trials necessarily are designed as dose-response experiments. Second, a wide range of functional forms are used to express relationships between dose and response. These considerations are also important for clinical development because pharmacokinetic (PK; and variability) plus pharmacokinetic-pharmacodynamic modeling may allow one to anticipate the shape of the dose-response curve and so the trial design. Here, we describe how the location and steepness of the dose response is determined by the PKs of the compound being tested and its exposure-response relationship in terms of potency (location), efficacy (maximum effect) and Hill coefficient (steepness). Thus, the location (50% effective dose [ED50 ]) is dependent not only on the potency (half-maximal effective concentration) but also the compound's PKs. Similarly, the steepness of the dose response is shown to be a function of the half-life of the drug. It is also shown that the shape of relationship varies dependent on the assumed time course of the disease. This is important in the context of drug-discovery where the in vivo potencies of compounds are compared as well as when considering an analysis of summary data (for example, model-based meta-analysis) for clinical decision making.


Assuntos
Oncologia , Humanos , Relação Dose-Resposta a Droga
2.
Front Immunol ; 13: 903063, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35903096

RESUMO

Epstein-Barr virus (EBV) establishes a lifelong latent infection in healthy humans, kept under immune control by cytotoxic T cells (CTLs). Following paediatric haematopoetic stem cell transplantation (HSCT), a loss of immune surveillance leads to opportunistic outgrowth of EBV-infected cells, resulting in EBV reactivation, which can ultimately progress to post-transplant lymphoproliferative disorder (PTLD). The aims of this study were to identify risk factors for EBV reactivation in children in the first 100 days post-HSCT and to assess the suitability of a previously reported mathematical model to mechanistically model EBV reactivation kinetics in this cohort. Retrospective electronic data were collected from 56 children who underwent HSCT at Great Ormond Street Hospital (GOSH) between 2005 and 2016. Using EBV viral load (VL) measurements from weekly quantitative PCR (qPCR) monitoring post-HSCT, a multivariable Cox proportional hazards (Cox-PH) model was developed to assess time to first EBV reactivation event in the first 100 days post-HSCT. Sensitivity analysis of a previously reported mathematical model was performed to identify key parameters affecting EBV VL. Cox-PH modelling revealed EBV seropositivity of the HSCT recipient and administration of anti-thymocyte globulin (ATG) pre-HSCT to be significantly associated with an increased risk of EBV reactivation in the first 100 days post-HSCT (adjusted hazard ratio (AHR) = 2.32, P = 0.02; AHR = 2.55, P = 0.04). Five parameters were found to affect EBV VL in sensitivity analysis of the previously reported mathematical model. In conclusion, we have assessed the effect of multiple covariates on EBV reactivation in the first 100 days post-HSCT in children and have identified key parameters in a previously reported mechanistic mathematical model that affect EBV VL. Future work will aim to fit this model to patient EBV VLs, develop the model to account for interindividual variability and model the effect of clinically relevant covariates such as rituximab therapy and ATG on EBV VL.


Assuntos
Infecções por Vírus Epstein-Barr , Transplante de Células-Tronco Hematopoéticas , Soro Antilinfocitário , Criança , Infecções por Vírus Epstein-Barr/complicações , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Herpesvirus Humano 4/fisiologia , Humanos , Modelos Teóricos , Estudos Retrospectivos , Fatores de Risco
3.
J Biol Dyn ; 16(1): 160-185, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35404766

RESUMO

In this study we compare seven mathematical models of tumour growth using nonlinear mixed-effects which allows for a simultaneous fitting of multiple data and an estimation of both mean behaviour and variability. This is performed for two large datasets, a patient-derived xenograft (PDX) dataset consisting of 220 PDXs spanning six different tumour types and a cell-line derived xenograft (CDX) dataset consisting of 25 cell lines spanning eight tumour types. Comparison of the models is performed by means of visual predictive checks (VPCs) as well as the Akaike Information Criterion (AIC). Additionally, we fit the models to 500 bootstrap samples drawn from the datasets to expand the comparison of the models under dataset perturbations and understand the growth kinetics that are best fitted by each model. Through qualitative and quantitative metrics the best models are identified the effectiveness and practicality of simpler models is highlighted.


Assuntos
Xenoenxertos , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Clin Transl Sci ; 15(3): 588-600, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34716976

RESUMO

Translational model-based approaches have played a role in increasing success in the development of novel anticancer treatments. However, despite this, significant translational uncertainty remains from animal models to patients. Optimization of dose and scheduling (regimen) of drugs to maximize the therapeutic utility (maximize efficacy while avoiding limiting toxicities) is still predominately driven by clinical investigations. Here, we argue that utilizing pragmatic mechanism-based translational modeling of nonclinical data can further inform this optimization. Consequently, a prototype model is demonstrated that addresses the required fundamental mechanisms.


Assuntos
Antineoplásicos , Neoplasias , Animais , Antineoplásicos/uso terapêutico , Humanos , Oncologia , Neoplasias/induzido quimicamente , Neoplasias/tratamento farmacológico
5.
CPT Pharmacometrics Syst Pharmacol ; 11(2): 133-148, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34399036

RESUMO

Mathematical models in oncology aid in the design of drugs and understanding of their mechanisms of action by simulation of drug biodistribution, drug effects, and interaction between tumor and healthy cells. The traditional approach in pharmacometrics is to develop and validate ordinary differential equation models to quantify trends at the population level. In this approach, time-course of biological measurements is modeled continuously, assuming a homogenous population. Another approach, agent-based models, focuses on the behavior and fate of biological entities at the individual level, which subsequently could be summarized to reflect the population level. Heterogeneous cell populations and discrete events are simulated, and spatial distribution can be incorporated. In this tutorial, an agent-based model is presented and compared to an ordinary differential equation model for a tumor efficacy model inhibiting the pERK pathway. We highlight strengths, weaknesses, and opportunities of each approach.


Assuntos
Modelos Teóricos , Neoplasias , Simulação por Computador , Humanos , Modelos Biológicos , Neoplasias/tratamento farmacológico , Distribuição Tecidual
6.
Eur J Cancer ; 150: 42-52, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33892406

RESUMO

PURPOSE: Cancer disease burden is commonly assessed radiologically in solid tumours in support of response assessment via the RECIST criteria. These longitudinal data are amenable to mathematical modelling and these models characterise the initial tumour size, initial tumour shrinkage in responding patients and rate of regrowth as patient's disease progresses. Knowing how these parameters vary between patient populations and treatments would inform translational modelling approaches from non-clinical data as well as clinical trial design. EXPERIMENTAL DESIGN: Here a meta-analysis of reported model parameter values is reported. Appropriate literature was identified via a PubMed search and the application of text-based clustering approaches. The resulting parameter estimates are examined graphically and with ANOVA. RESULTS: Parameter values from a total of 80 treatment arms were identified based on 80 trial arms containing a total of 34,881 patients. Parameter estimates are generally consistent. It is found that a significant proportion of the variation in rates of tumour shrinkage and regrowth are explained by differing cancer and treatment: cancer type accounts for 66% of the variation in shrinkage rate and 71% of the variation in reported regrowth rates. Mean average parameter values by cancer and treatment are also reported. CONCLUSIONS: Mathematical modelling of longitudinal data is most often reported on a per clinical trial basis. However, the results reported here suggest that a more integrative approach would benefit the development of new treatments as well as the further optimisation of those currently used.


Assuntos
Modelos Teóricos , Recidiva Local de Neoplasia , Neoplasias/tratamento farmacológico , Critérios de Avaliação de Resposta em Tumores Sólidos , Carga Tumoral/efeitos dos fármacos , Antineoplásicos/efeitos adversos , Antineoplásicos/uso terapêutico , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos , Humanos , Cinética , Neoplasias/diagnóstico por imagem , Neoplasias/mortalidade , Neoplasias/patologia , Intervalo Livre de Progressão
7.
Clin Cancer Res ; 27(1): 189-201, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33028591

RESUMO

PURPOSE: Osimertinib is a potent and selective EGFR tyrosine kinase inhibitor (EGFR-TKI) of both sensitizing and T790M resistance mutations. To treat metastatic brain disease, blood-brain barrier (BBB) permeability is considered desirable for increasing clinical efficacy. EXPERIMENTAL DESIGN: We examined the level of brain penetration for 16 irreversible and reversible EGFR-TKIs using multiple in vitro and in vivo BBB preclinical models. RESULTS: In vitro osimertinib was the weakest substrate for human BBB efflux transporters (efflux ratio 3.2). In vivo rat free brain to free plasma ratios (Kpuu) show osimertinib has the most BBB penetrance (0.21), compared with the other TKIs (Kpuu ≤ 0.12). PET imaging in Cynomolgus macaques demonstrated osimertinib was the only TKI among those tested to achieve significant brain penetrance (C max %ID 1.5, brain/blood Kp 2.6). Desorption electrospray ionization mass spectroscopy images of brains from mouse PC9 macrometastases models showed osimertinib readily distributes across both healthy brain and tumor tissue. Comparison of osimertinib with the poorly BBB penetrant afatinib in a mouse PC9 model of subclinical brain metastases showed only osimertinib has a significant effect on rate of brain tumor growth. CONCLUSIONS: These preclinical studies indicate that osimertinib can achieve significant exposure in the brain compared with the other EGFR-TKIs tested and supports the ongoing clinical evaluation of osimertinib for the treatment of EGFR-mutant brain metastasis. This work also demonstrates the link between low in vitro transporter efflux ratios and increased brain penetrance in vivo supporting the use of in vitro transporter assays as an early screen in drug discovery.


Assuntos
Acrilamidas/farmacocinética , Compostos de Anilina/farmacocinética , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacocinética , Acrilamidas/administração & dosagem , Compostos de Anilina/administração & dosagem , Animais , Neoplasias Encefálicas/secundário , Cães , Receptores ErbB/antagonistas & inibidores , Humanos , Neoplasias Pulmonares/patologia , Macaca fascicularis , Células Madin Darby de Rim Canino , Masculino , Camundongos , Permeabilidade , Inibidores de Proteínas Quinases/administração & dosagem , Ratos , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
8.
JCO Clin Cancer Inform ; 4: 938-946, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33112660

RESUMO

A key aim of early clinical development for new cancer treatments is to detect the potential for efficacy early and to identify a safe therapeutic dose to take forward to phase II. Because of this need, researchers have sought to build mathematical models linking initial radiologic tumor response, often assessed after 6 to 8 weeks of treatment, with overall survival. However, there has been mixed success of this approach in the literature. We argue that evolutionary selection pressure should be considered to interpret these early efficacy signals and so optimize cancer therapy.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias , Células Clonais , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética
9.
Clin Pharmacol Ther ; 108(3): 447-457, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32569424

RESUMO

A 2-day meeting was held by members of the UK Quantitative Systems Pharmacology Network () in November 2018 on the topic of Translational Challenges in Oncology. Participants from a wide range of backgrounds were invited to discuss current and emerging modeling applications in nonclinical and clinical drug development, and to identify areas for improvement. This resulting perspective explores opportunities for impactful quantitative pharmacology approaches. Four key themes arose from the presentations and discussions that were held, leading to the following recommendations: Evaluate the predictivity and reproducibility of animal cancer models through precompetitive collaboration. Apply mechanism of action (MoA) based mechanistic models derived from nonclinical data to clinical trial data. Apply MoA reflective models across trial data sets to more robustly quantify the natural history of disease and response to differing interventions. Quantify more robustly the dose and concentration dependence of adverse events through mathematical modelling techniques and modified trial design.


Assuntos
Antineoplásicos/uso terapêutico , Desenvolvimento de Medicamentos , Oncologia , Modelos Teóricos , Neoplasias Experimentais/tratamento farmacológico , Pesquisa Translacional Biomédica , Animais , Antineoplásicos/efeitos adversos , Linhagem Celular Tumoral , Ensaios Clínicos como Assunto , Relação Dose-Resposta a Droga , Determinação de Ponto Final , Humanos , Neoplasias Experimentais/genética , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Projetos de Pesquisa , Critérios de Avaliação de Resposta em Tumores Sólidos , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
10.
J Theor Biol ; 501: 110250, 2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32199856

RESUMO

We study a five-compartment mathematical model originally proposed by Kuznetsov et al. (1994) to investigate the effect of nonlinear interactions between tumour and immune cells in the tumour microenvironment, whereby immune cells may induce tumour cell death, and tumour cells may inactivate immune cells. Exploiting a separation of timescales in the model, we use the method of matched asymptotics to derive a new two-dimensional, long-timescale, approximation of the full model, which differs from the quasi-steady-state approximation introduced by Kuznetsov et al. (1994), but is validated against numerical solutions of the full model. Through a phase-plane analysis, we show that our reduced model is excitable, a feature not traditionally associated with tumour-immune dynamics. Through a systematic parameter sensitivity analysis, we demonstrate that excitability generates complex bifurcating dynamics in the model. These are consistent with a variety of clinically observed phenomena, and suggest that excitability may underpin tumour-immune interactions. The model exhibits the three stages of immunoediting - elimination, equilibrium, and escape, via stable steady states with different tumour cell concentrations. Such heterogeneity in tumour cell numbers can stem from variability in initial conditions and/or model parameters that control the properties of the immune system and its response to the tumour. We identify different biophysical parameter targets that could be manipulated with immunotherapy in order to control tumour size, and we find that preferred strategies may differ between patients depending on the strength of their immune systems, as determined by patient-specific values of associated model parameters.


Assuntos
Imunoterapia , Neoplasias , Humanos , Sistema Imunitário , Modelos Imunológicos , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA