Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 320
Filtrar
1.
JCI Insight ; 8(17)2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37681413

RESUMO

Osteoarthritis (OA) is the most common joint disorder, and disease-modifying OA drugs (DMOADs) represent a major need in OA management. Krüppel-like factor 4 (KLF4) is a central transcription factor upregulating regenerative and protective functions in joint tissues. This study was aimed to identify small molecules activating KLF4 expression and to determine functions and mechanisms of the hit compounds. High-throughput screening (HTS) with 11,948 clinical-stage compounds was performed using a reporter cell line detecting endogenous KLF4 activation. Eighteen compounds were identified through the HTS and confirmed in a secondary screen. After testing in SW1353 chondrosarcoma cells and human chondrocytes, mocetinostat - a class I selective histone deacetylase (HDAC) inhibitor - had the best profile of biological activities. Mocetinostat upregulated cartilage signature genes in human chondrocytes, meniscal cells, and BM-derived mesenchymal stem cells, and it downregulated hypertrophic, inflammatory, and catabolic genes in those cells and synoviocytes. I.p. administration of mocetinostat into mice reduced severity of OA-associated changes and improved pain behaviors. Global gene expression and proteomics analyses revealed that regenerative and protective effects of mocetinostat were dependent on peroxisome proliferator-activated receptor γ coactivator 1-α. These findings show therapeutic and protective activities of mocetinostat against OA, qualifying it as a candidate to be used as a DMOAD.


Assuntos
Neoplasias Ósseas , Osteoartrite , Humanos , Animais , Camundongos , Fator 4 Semelhante a Kruppel , Osteoartrite/tratamento farmacológico , Inflamação , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico
2.
J Am Soc Mass Spectrom ; 34(9): 2025-2033, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37527410

RESUMO

Differential precipitation of proteins (DiffPOP) is a simple technique for fractionating complex protein mixtures. Using stepwise addition of acidified methanol, ten distinct subsets of proteins can be selectively precipitated by centrifugation and identified by mass spectrometry-based proteomics. We have previously shown that the ability of a protein to resist precipitation can be altered by drug binding, which enabled us to identify a novel drug-target interaction. Here, we show that the addition of DiffPOP to a standard LC-MS proteomics workflow results in a three-dimensional separation of peptides that increases protein coverage and peptide identifications. Importantly, DiffPOP reveals solubility differences between proteoforms, potentially providing valuable insights that are typically lost in bottom-up proteomics.


Assuntos
Proteínas , Proteômica , Proteômica/métodos , Peptídeos , Cromatografia Líquida/métodos , Espectrometria de Massas
3.
J Proteome Res ; 21(11): 2586-2595, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36195974

RESUMO

The transcription factors p63 and p73 have high similarity to the tumor suppressor protein p53. While the importance of p53 in DNA damage control is established, the functions of p63 or p73 remain elusive. Here, we analyzed nvp63, the cnidarian homologue of p63, that is expressed in the mesenteries of the starlet sea anemone Nematostella vectensis and that is activated in response to DNA damage. We used ultraviolet light (UV) to induce DNA damage and determined the chromatin-bound proteome with quantitative, bottom-up proteomics. We found that genotoxic stress or nvp63 knockdown recruited the protein nvPIWIL1, a homologue of the piRNA-binding PIWI protein family. Knockdown nvPIWIL1 increased protein expression from open reading frames (ORFs) that overlap with class I and II transposable element DNA sequences in the genome of N. vectensis. UV irradiation induced apoptosis, and apoptosis was reduced in the absence of nvp63 but increased with the loss of nvPIWIL1. Loss of nvp63 increased the presence of class I LTR and non-LTR retrotransposon but not of class II DNA transposon-associated protein products. These results suggest that an evolutionary early function of nvp63 might be to control genome stability in response to activation of transposable elements, which induce DNA damage during reintegration in the genome.


Assuntos
Anêmonas-do-Mar , Animais , Anêmonas-do-Mar/genética , Anêmonas-do-Mar/metabolismo , Retroelementos/genética , Filogenia , Evolução Biológica , Proteína Supressora de Tumor p53/genética
4.
Nat Cell Biol ; 24(9): 1378-1393, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36075972

RESUMO

While acetylated, RNA-binding-deficient TDP-43 reversibly phase separates within nuclei into complex droplets (anisosomes) comprised of TDP-43-containing liquid outer shells and liquid centres of HSP70-family chaperones, cytoplasmic aggregates of TDP-43 are hallmarks of multiple neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Here we show that transient oxidative stress, proteasome inhibition or inhibition of the ATP-dependent chaperone activity of HSP70 provokes reversible cytoplasmic TDP-43 de-mixing and transition from liquid to gel/solid, independently of RNA binding or stress granules. Isotope labelling mass spectrometry was used to identify that phase-separated cytoplasmic TDP-43 is bound by the small heat-shock protein HSPB1. Binding is direct, mediated through TDP-43's RNA binding and low-complexity domains. HSPB1 partitions into TDP-43 droplets, inhibits TDP-43 assembly into fibrils, and is essential for disassembly of stress-induced TDP-43 droplets. A decrease in HSPB1 promotes cytoplasmic TDP-43 de-mixing and mislocalization. HSPB1 depletion was identified in spinal motor neurons of patients with ALS containing aggregated TDP-43. These findings identify HSPB1 to be a regulator of cytoplasmic TDP-43 phase separation and aggregation.


Assuntos
Proteínas de Ligação a DNA , Proteínas de Choque Térmico Pequenas , Proteínas de Choque Térmico , Transição de Fase , Trifosfato de Adenosina , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Humanos , Chaperonas Moleculares/genética , Complexo de Endopeptidases do Proteassoma , RNA/metabolismo
5.
Elife ; 112022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36107469

RESUMO

During times of unpredictable stress, organisms must adapt their gene expression to maximize survival. Along with changes in transcription, one conserved means of gene regulation during conditions that quickly repress translation is the formation of cytoplasmic phase-separated mRNP granules such as P-bodies and stress granules. Previously, we identified that distinct steps in gene expression can be coupled during glucose starvation as promoter sequences in the nucleus are able to direct the subcellular localization and translatability of mRNAs in the cytosol. Here, we report that Rvb1 and Rvb2, conserved ATPase proteins implicated as protein assembly chaperones and chromatin remodelers, were enriched at the promoters and mRNAs of genes involved in alternative glucose metabolism pathways that we previously found to be transcriptionally upregulated but translationally downregulated during glucose starvation in yeast. Engineered Rvb1/Rvb2-binding on mRNAs was sufficient to sequester mRNAs into mRNP granules and repress their translation. Additionally, this Rvb tethering to the mRNA drove further transcriptional upregulation of the target genes. Further, we found that depletion of Rvb2 caused decreased alternative glucose metabolism gene mRNA induction, but upregulation of protein synthesis during glucose starvation. Overall, our results point to Rvb1/Rvb2 coupling transcription, mRNA granular localization, and translatability of mRNAs during glucose starvation. This Rvb-mediated rapid gene regulation could potentially serve as an efficient recovery plan for cells after stress removal.


Assuntos
Adenosina Trifosfatases/metabolismo , Glucose , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Cromatina/metabolismo , DNA Helicases/metabolismo , Glucose/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
6.
J Cell Biochem ; 123(9): 1495-1505, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35892149

RESUMO

Following health agencies warning, the use of animal origin supplements should be avoided in biological products proposed as therapy in humans. Platelet lysate and several other growth factors sources are alternatives to replace fetal calf serum, the current gold standard in clinical-grade cell culture. However, the platelet supplement's content lacks data due to different production methods. The principle behind these products relays on the lysis of platelets that release several proteins, some of which are contained in heterogeneous granules and coordinate biological functions. This study aims to analyze the composition and reproducibility of a platelet lysate produced with a standardized method, by describing several batches' protein and particle content using proteomics and dynamic light scattering. Proteomics data revealed a diversified protein content, with some related to essential cellular processes such as proliferation, morphogenesis, differentiation, biosynthesis, adhesion, and metabolism. It also detected proteins responsible for activation and binding of transforming growth factor beta, hepatocyte growth factor, and insulin-like growth factor. Total protein, biochemical, and growth factors quantitative data showed consistent and reproducible values across batches. Novel data on two major particle populations is presented, with high dispersion level at 231 ± 96 d.nm and at 30 ± 8 d.nm, possibly being an important way of protein trafficking through the cellular microenvironment. This experimental and descriptive analysis aims to support the content definition and quality criteria of a cell supplement for clinical applications.


Assuntos
Produtos Biológicos , Células-Tronco Mesenquimais , Somatomedinas , Animais , Plaquetas/metabolismo , Diferenciação Celular , Proliferação de Células , Terapia Baseada em Transplante de Células e Tecidos , Células Cultivadas , Meios de Cultura/química , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Proteômica , Reprodutibilidade dos Testes , Soroalbumina Bovina/análise , Soroalbumina Bovina/metabolismo , Somatomedinas/análise , Somatomedinas/metabolismo , Fator de Crescimento Transformador beta/metabolismo
7.
Cell Death Dis ; 13(5): 448, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35538058

RESUMO

The family of hexokinases (HKs) catalyzes the first step of glycolysis, the ATP-dependent phosphorylation of glucose to glucose-6-phosphate. While HK1 and HK2 are ubiquitously expressed, the less well-studied HK3 is primarily expressed in hematopoietic cells and tissues and is highly upregulated during terminal differentiation of some acute myeloid leukemia (AML) cell line models. Here we show that expression of HK3 is predominantly originating from myeloid cells and that the upregulation of this glycolytic enzyme is not restricted to differentiation of leukemic cells but also occurs during ex vivo myeloid differentiation of healthy CD34+ hematopoietic stem and progenitor cells. Within the hematopoietic system, we show that HK3 is predominantly expressed in cells of myeloid origin. CRISPR/Cas9 mediated gene disruption revealed that loss of HK3 has no effect on glycolytic activity in AML cell lines while knocking out HK2 significantly reduced basal glycolysis and glycolytic capacity. Instead, loss of HK3 but not HK2 led to increased sensitivity to ATRA-induced cell death in AML cell lines. We found that HK3 knockout (HK3-null) AML cells showed an accumulation of reactive oxygen species (ROS) as well as DNA damage during ATRA-induced differentiation. RNA sequencing analysis confirmed pathway enrichment for programmed cell death, oxidative stress, and DNA damage response in HK3-null AML cells. These signatures were confirmed in ATAC sequencing, showing that loss of HK3 leads to changes in chromatin configuration and increases the accessibility of genes involved in apoptosis and stress response. Through isoform-specific pulldowns, we furthermore identified a direct interaction between HK3 and the proapoptotic BCL-2 family member BIM, which has previously been shown to shorten myeloid life span. Our findings provide evidence that HK3 is dispensable for glycolytic activity in AML cells while promoting cell survival, possibly through direct interaction with the BH3-only protein BIM during ATRA-induced neutrophil differentiation.


Assuntos
Hexoquinase , Leucemia Mieloide Aguda , Sobrevivência Celular/genética , Glicólise/genética , Hexoquinase/genética , Hexoquinase/metabolismo , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Células Mieloides/metabolismo
8.
J Proteome Res ; 21(4): 1017-1028, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35271278

RESUMO

During tumorigenesis, DNA mutations in protein coding sequences can alter amino acid sequences which can change the structures of proteins. While the 3D structure of mutated proteins has been studied with atomic resolution, the precise impact of somatic mutations on the 3D proteome during malignant transformation remains unknown because methods to reveal in vivo protein structures in high throughput are limited. Here, we measured the accessibility of the lysine ε-amine for chemical modification across proteomes using covalent protein painting (CPP) to indirectly determine alterations in the 3D proteome. CPP is a novel, high-throughput quantitative mass spectrometric method that surveyed a total of 8052 lysine sites across the 60 cell lines of the well-studied anticancer cell line panel (NCI60). Overall, 5.2 structural alterations differentiated any cancer cell line from the other 59. Structural aberrations in 98 effector proteins correlated with the selected presence of 90 commonly mutated proteins in the NCI60 cell line panel, suggesting that different tumor genotypes reshape a limited set of effector proteins. We searched our dataset for druggable conformational aberrations and identified 49 changes in the cancer conformational landscape that correlated with the growth inhibition profiles of 300 drug candidates out of 50,000 small molecules. We found that alterations in heat shock proteins are key predictors of anticancer drug efficacy, which implies that the proteostasis network may have a general but hitherto unrecognized role in maintaining malignancy. Individual lysine sites may serve as biomarkers to guide drug selection or may be directly targeted for anticancer drug development.


Assuntos
Neoplasias , Carcinogênese/genética , Humanos , Espectrometria de Massas , Neoplasias/genética , Proteoma/química , Proteoma/genética , Proteostase
9.
Surg Endosc ; 36(8): 6129-6137, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35043232

RESUMO

BACKGROUND: Post-operative ileus and delayed return of gastrointestinal function are complications seen frequently in patients undergoing colorectal surgery. Many enhanced recovery after surgery protocols include alvimopan to inhibit the effects of opiates in the gastrointestinal tract and lidocaine to augment analgesics. Limited data exist regarding alvimopan's efficacy in opiate-sparing regimens. METHODS: This single-center, retrospective cohort analysis was conducted in a randomly selected population of adult patients undergoing colorectal resection between February 2018 and October 2019. Patients meeting inclusion criteria were divided into four groups dependent upon whether or not they received alvimopan (A or a) and/or lidocaine (L or l). The primary endpoint in this study was median time to first bowel movement or discharge, whichever came first. Our secondary endpoint was length of stay. RESULTS: Of the 430 patients evaluated, a total of 192 patients were included in the final evaluation in the following groups: AL (n = 93), Al (n = 34), aL (n = 44), and al (n = 21). A significant difference was found among the groups for the primary outcome of median time to bowel movement or discharge (p = 0.001). Three subsequent pair-wise comparisons resulted in a significant difference in the primary outcome: group AL 39.4 h vs. group aL 54.0 h (p = 0.003), group AL 39.4 h vs. group al 55.4 h (p = 0.001), and group Al 44.9 h vs. group al 55.4 h (p = 0.01). Length of stay was significantly reduced by 1.8 days in groups AL and Al compared to group aL (p < 0.001). CONCLUSION: Treatment with alvimopan resulted in a significant improvement in time to GI recovery and decreased length of stay in an established ERAS program. While lidocaine's reduction in opiates was minimal, the group receiving both alvimopan and lidocaine had the greatest reduction in time to GI recovery and length of stay.


Assuntos
Cirurgia Colorretal , Íleus , Alcaloides Opiáceos , Adulto , Fármacos Gastrointestinais/uso terapêutico , Humanos , Íleus/etiologia , Íleus/prevenção & controle , Tempo de Internação , Lidocaína/farmacologia , Lidocaína/uso terapêutico , Alcaloides Opiáceos/farmacologia , Piperidinas , Complicações Pós-Operatórias/induzido quimicamente , Complicações Pós-Operatórias/prevenção & controle , Recuperação de Função Fisiológica , Estudos Retrospectivos
10.
J Proteome Res ; 20(12): 5347-5358, 2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34761935

RESUMO

The tumor suppressor p53-like protein p63 is required for self-renewal of epidermal tissues. Loss of p63 or exposure to ultraviolet (UV) irradiation triggers terminal differentiation in keratinocytes. However, it remains unclear how p63 diverts epidermal cells from proliferation to terminal differentiation, thereby contributing to successful tissue self-renewal. Here, we used bottom-up proteomics to identify the proteome at the chromatin in normal human epidermal keratinocytes following UV irradiation and p63 depletion. We found that loss of p63 increased DNA damage and that UV irradiation recruited the cyclin-dependent kinase CDK12 and the serine/threonine protein kinase SMG1 to chromatin only in the presence of p63. A post-translational modification analysis of ΔNp63α with mass spectrometry revealed that phosphorylation of T357/S358 and S368 was dependent on SMG1, whereas CDK12 increased the phosphorylation of ΔNp63α at S66/S68 and S301. Indirect phosphorylation of ΔNp63α in the presence of SMG1 enabled ΔNp63α to bind to the tumor suppressor p53-specific DNA recognition sequence, whereas CDK12 rendered ΔNp63α less responsive to UV irradiation and was not required for specific DNA binding. CDK12 and SMG1 are known to regulate the transcription and splicing of RNAs and the decay of nonsense RNAs, respectively, and a subset of p63-specific protein-protein interactions at the chromatin also linked p63 to RNA transcription and decay. We observed that in the absence of p63, UV irradiation resulted in more ORF1p. ORF1p is the first protein product of the intronless non-LTR retrotransposon LINE-1, indicating a derailed surveillance of RNA processing and/or translation. Our results suggest that p63 phosphorylation and transcriptional activation might correspond to altered RNA processing and/or translation to protect proliferating keratinocytes from increased genotoxic stress.


Assuntos
Queratinócitos , Transativadores , Quinases Ciclina-Dependentes/metabolismo , Humanos , Queratinócitos/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases , RNA/metabolismo , Transativadores/genética , Fatores de Transcrição , Proteínas Supressoras de Tumor , Raios Ultravioleta
11.
Anal Chem ; 93(40): 13651-13657, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34597027

RESUMO

Viruses can evade the host immune system by displaying numerous glycans on their surface "spike-proteins" that cover immune epitopes. We have developed an ultrasensitive "single-pot" method to assess glycan occupancy and the extent of glycan processing from high-mannose to complex forms at each N-glycosylation site. Though aimed at characterizing glycosylation of viral spike-proteins as potential vaccines, this method is applicable for the analysis of site-specific glycosylation of any glycoprotein.


Assuntos
Epitopos/química , Glicoproteínas/química , Manose , Polissacarídeos , Proteínas Virais de Fusão/química , Glicosilação
12.
EMBO Rep ; 22(8): e51902, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34169630

RESUMO

Aurora kinase A (AURKA) is a conserved kinase that plays crucial roles in numerous cellular processes. Although AURKA overexpression is frequent in human cancers, its pleiotropic functions and multifaceted regulation present challenges in its therapeutic targeting. Key to overcoming these challenges is to identify and characterize the full range of AURKA interactors, which are often weak and transient. Previous proteomic studies were limited in monitoring dynamic and non-mitotic AURKA interactions. Here, we generate the proximity interactome of AURKA in asynchronous cells, which consists of 440 proteins involving multiple biological processes and cellular compartments. Importantly, AURKA has extensive proximate and physical interactions to centriolar satellites, key regulators of the primary cilium. Loss-of-function experiments identify satellites as negative regulators of AURKA activity, abundance, and localization in quiescent cells. Notably, loss of satellites activates AURKA at the basal body, decreases centrosomal IFT88 levels, and causes ciliogenesis defects. Collectively, our results provide a resource for dissecting spatiotemporal regulation of AURKA and uncover its proteostatic regulation by satellites as a new mechanism for its ciliary functions.


Assuntos
Aurora Quinase A , Proteômica , Aurora Quinase A/genética , Centríolos/genética , Cílios/genética , Grânulos Citoplasmáticos , Humanos
13.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33692125

RESUMO

Rare genetic mutations result in aggregation and spreading of cognate proteins in neurodegenerative disorders; however, in the absence of mutation (i.e., in the vast majority of "sporadic" cases), mechanisms for protein misfolding/aggregation remain largely unknown. Here, we show environmentally induced nitrosative stress triggers protein aggregation and cell-to-cell spread. In patient brains with amyotrophic lateral sclerosis (ALS)/frontotemporal dementia (FTD), aggregation of the RNA-binding protein TDP-43 constitutes a major component of aberrant cytoplasmic inclusions. We identify a pathological signaling cascade whereby reactive nitrogen species cause S-nitrosylation of TDP-43 (forming SNO-TDP-43) to facilitate disulfide linkage and consequent TDP-43 aggregation. Similar pathological SNO-TDP-43 levels occur in postmortem human FTD/ALS brains and in cell-based models, including human-induced pluripotent stem cell (hiPSC)-derived neurons. Aggregated TDP-43 triggers additional nitrosative stress, representing positive feed forward leading to further SNO-TDP-43 formation and disulfide-linked oligomerization/aggregation. Critically, we show that these redox reactions facilitate cell spreading in vivo and interfere with the TDP-43 RNA-binding activity, affecting SNMT1 and phospho-(p)CREB levels, thus contributing to neuronal damage in ALS/FTD disorders.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Proteínas de Ligação a DNA/metabolismo , Demência Frontotemporal/metabolismo , S-Nitrosotióis/metabolismo , Esclerose Lateral Amiotrófica/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Cisteína/metabolismo , Proteínas de Ligação a DNA/química , Demência Frontotemporal/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios Motores/metabolismo , Óxido Nítrico/metabolismo , Agregação Patológica de Proteínas , Processamento Pós-Transcricional do RNA , Espécies Reativas de Nitrogênio/metabolismo , S-Nitrosotióis/química , Estresse Fisiológico
14.
Mol Biochem Parasitol ; 242: 111362, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33513391

RESUMO

Plasmodium falciparum causes the deadliest form of malaria. Adequate redox control is crucial for this protozoan parasite to overcome oxidative and nitrosative challenges, thus enabling its survival. Sulfenylation is an oxidative post-translational modification, which acts as a molecular on/off switch, regulating protein activity. To obtain a better understanding of which proteins are redox regulated in malaria parasites, we established an optimized affinity capture protocol coupled with mass spectrometry analysis for identification of in vivo sulfenylated proteins. The non-dimedone based probe BCN-Bio1 shows reaction rates over 100-times that of commonly used dimedone-based probes, allowing for a rapid trapping of sulfenylated proteins. Mass spectrometry analysis of BCN-Bio1 labeled proteins revealed the first insight into the Plasmodium falciparum trophozoite sulfenylome, identifying 102 proteins containing 152 sulfenylation sites. Comparison with Plasmodium proteins modified by S-glutathionylation and S-nitrosation showed a high overlap, suggesting a common core of proteins undergoing redox regulation by multiple mechanisms. Furthermore, parasite proteins which were identified as targets for sulfenylation were also identified as being sulfenylated in other organisms, especially proteins of the glycolytic cycle. This study suggests that a number of Plasmodium proteins are subject to redox regulation and it provides a basis for further investigations into the exact structural and biochemical basis of regulation, and a deeper understanding of cross-talk between post-translational modifications.


Assuntos
Compostos Bicíclicos com Pontes/química , Sondas Moleculares/química , Plasmodium falciparum/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Protozoários/metabolismo , Ácidos Sulfênicos/metabolismo , Trofozoítos/metabolismo , Células Cultivadas , Cisteína/metabolismo , Eritrócitos/parasitologia , Ontologia Genética , Glutationa/metabolismo , Humanos , Espectrometria de Massas , Anotação de Sequência Molecular , Compostos Nitrosos/metabolismo , Oxirredução , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Coloração e Rotulagem/métodos , Trofozoítos/genética
15.
Science ; 371(6526)2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33273062

RESUMO

Here we describe mechanistically distinct enzymes (a kinase, a guanosine triphosphatase, and a ubiquitin protein hydrolase) that function in disparate biochemical pathways and can also act in concert to mediate a series of redox reactions. Each enzyme manifests a second, noncanonical function-transnitrosylation-that triggers a pathological biochemical cascade in mouse models and in humans with Alzheimer's disease (AD). The resulting series of transnitrosylation reactions contributes to synapse loss, the major pathological correlate to cognitive decline in AD. We conclude that enzymes with distinct primary reaction mechanisms can form a completely separate network for aberrant transnitrosylation. This network operates in the postreproductive period, so natural selection against such abnormal activity may be decreased.


Assuntos
Doença de Alzheimer/enzimologia , Quinase 5 Dependente de Ciclina/metabolismo , Dinaminas/metabolismo , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico/metabolismo , Sinapses/enzimologia , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Cisteína/genética , Cisteína/metabolismo , Modelos Animais de Doenças , Células HEK293 , Humanos , Camundongos , Camundongos Transgênicos , Mutação , Nitroarginina/farmacologia , Oxirredução , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Sinapses/patologia , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo
16.
Science ; 371(6529)2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33335017

RESUMO

The RNA binding protein TDP-43 forms intranuclear or cytoplasmic aggregates in age-related neurodegenerative diseases. In this study, we found that RNA binding-deficient TDP-43 (produced by neurodegeneration-causing mutations or posttranslational acetylation in its RNA recognition motifs) drove TDP-43 demixing into intranuclear liquid spherical shells with liquid cores. These droplets, which we named "anisosomes", have shells that exhibit birefringence, thus indicating liquid crystal formation. Guided by mathematical modeling, we identified the primary components of the liquid core to be HSP70 family chaperones, whose adenosine triphosphate (ATP)-dependent activity maintained the liquidity of shells and cores. In vivo proteasome inhibition within neurons, to mimic aging-related reduction of proteasome activity, induced TDP-43-containing anisosomes. These structures converted to aggregates when ATP levels were reduced. Thus, acetylation, HSP70, and proteasome activities regulate TDP-43 phase separation and conversion into a gel or solid phase.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Agregados Proteicos , Proteínas de Ligação a RNA/metabolismo , Envelhecimento/metabolismo , Animais , Anisotropia , Microscopia Crioeletrônica , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Células HEK293 , Histona Desacetilases/metabolismo , Humanos , Cristais Líquidos/química , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Domínios Proteicos , Proteínas de Ligação a RNA/genética , Ratos , Ratos Sprague-Dawley
17.
Angew Chem Int Ed Engl ; 60(7): 3603-3610, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33314603

RESUMO

CD22, a member of Siglec family of sialic acid binding proteins, has restricted expression on B cells. Antibody-based agents targeting CD22 or CD20 on B lymphoma and leukemia cells exhibit clinical efficacy for treating these malignancies, but also attack normal B cells leading to immune deficiency. Here, we report a chemoenzymatic glycocalyx editing strategy to introduce high-affinity and specific CD22 ligands onto NK-92MI and cytokine-induced natural killer cells to achieve tumor-specific CD22 targeting. These CD22-ligand modified cells exhibited significantly enhanced tumor cell binding and killing in vitro without harming healthy B cells. For effective lymphoma cell killing in vivo, we further functionalized CD22 ligand-modified NK-92MI cells with the E-selectin ligand sialyl Lewis X to promote trafficking to bone marrow. The dual-functionalized cells resulted in the efficient suppression of B lymphoma in a xenograft model. Our results suggest that natural killer cells modified with glycan ligands to CD22 and selectins promote both targeted killing of B lymphoma cells and improved trafficking to sites where the cancer cells reside, respectively.


Assuntos
Células Matadoras Naturais/metabolismo , Linfoma de Células B/metabolismo , Engenharia Metabólica , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Animais , Configuração de Carboidratos , Linhagem Celular Tumoral , Células HEK293 , Humanos , Ligantes , Linfoma de Células B/terapia , Camundongos Endogâmicos NOD , Camundongos SCID , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/terapia , Polissacarídeos/metabolismo
18.
Mol Cell ; 81(3): 546-557.e5, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33378643

RESUMO

Eukaryotic cells regulate 5'-triphosphorylated RNAs (ppp-RNAs) to promote cellular functions and prevent recognition by antiviral RNA sensors. For example, RNA capping enzymes possess triphosphatase domains that remove the γ phosphates of ppp-RNAs during RNA capping. Members of the closely related PIR-1 (phosphatase that interacts with RNA and ribonucleoprotein particle 1) family of RNA polyphosphatases remove both the ß and γ phosphates from ppp-RNAs. Here, we show that C. elegans PIR-1 dephosphorylates ppp-RNAs made by cellular RNA-dependent RNA polymerases (RdRPs) and is required for the maturation of 26G-RNAs, Dicer-dependent small RNAs that regulate thousands of genes during spermatogenesis and embryogenesis. PIR-1 also regulates the CSR-1 22G-RNA pathway and has critical functions in both somatic and germline development. Our findings suggest that PIR-1 modulates both Dicer-dependent and Dicer-independent Argonaute pathways and provide insight into how cells and viruses use a conserved RNA phosphatase to regulate and respond to ppp-RNA species.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Monoéster Fosfórico Hidrolases/metabolismo , Processamento Pós-Transcricional do RNA , RNA/metabolismo , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Regulação da Expressão Gênica no Desenvolvimento , Monoéster Fosfórico Hidrolases/genética , Fosforilação , RNA/genética , Capuzes de RNA , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Ribonuclease III/genética , Ribonuclease III/metabolismo , Espermatogênese , Especificidade por Substrato
19.
JCI Insight ; 5(17)2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32879135

RESUMO

Prader-Willi syndrome (PWS) is a developmental disorder caused by loss of maternally imprinted genes on 15q11-q13, including melanoma antigen gene family member L2 (MAGEL2). The clinical phenotypes of PWS suggest impaired hypothalamic neuroendocrine function; however, the exact cellular defects are unknown. Here, we report deficits in secretory granule (SG) abundance and bioactive neuropeptide production upon loss of MAGEL2 in humans and mice. Unbiased proteomic analysis of Magel2pΔ/m+ mice revealed a reduction in components of SG in the hypothalamus that was confirmed in 2 PWS patient-derived neuronal cell models. Mechanistically, we show that proper endosomal trafficking by the MAGEL2-regulated WASH complex is required to prevent aberrant lysosomal degradation of SG proteins and reduction of mature SG abundance. Importantly, loss of MAGEL2 in mice, NGN2-induced neurons, and human patients led to reduced neuropeptide production. Thus, MAGEL2 plays an important role in hypothalamic neuroendocrine function, and cellular defects in this pathway may contribute to PWS disease etiology. Moreover, these findings suggest unanticipated approaches for therapeutic intervention.


Assuntos
Antígenos de Neoplasias/fisiologia , Hipotálamo/patologia , Neurônios/patologia , Neuropeptídeos/metabolismo , Síndrome de Prader-Willi/fisiopatologia , Proteínas/metabolismo , Proteínas/fisiologia , Vesículas Secretórias/patologia , Animais , Feminino , Humanos , Hipotálamo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Fenótipo , Transporte Proteico , Proteínas/genética , Proteoma/análise , Proteoma/metabolismo , Vesículas Secretórias/metabolismo
20.
Adv Sci (Weinh) ; 7(16): 1903140, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32832346

RESUMO

Primary cilia are shown to have membrane swelling, also known as ciliary bulbs. However, the role of these structures and their physiological relevance remains unknown. Here, it is reported that a ciliary bulb has extracellular vesicle (EV)-like characteristics. The ciliary extracellular-like vesicle (cELV) has a unique dynamic movement and can be released by mechanical fluid force. To better identify the cELV, differential multidimensional proteomic analyses are performed on the cELV. A database of 172 cELV proteins is generated, and all that examined are confirmed to be in the cELV. Repressing the expression of these proteins in vitro and in vivo inhibits cELV formation. In addition to the randomized heart looping, hydrocephalus, and cystic kidney in fish, compensated heart contractility is observed in both fish and mouse models. Specifically, low circulation of cELV results in hypotension with compensated heart function, left ventricular hypertrophy, cardiac fibrosis, and arrhythmogenic characteristics, which result in a high mortality rate in mice. Furthermore, the overall ejection fraction, stroke volume, and cardiac output are significantly decreased in mice lacking cELV. It is thus proposed that the cELV as a nanocompartment within a primary cilium plays an important role in cardiovascular functions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA