Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Biol ; 17(6): e3000307, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31211773

RESUMO

Hearing loss is a major risk factor for tinnitus, hyperacusis, and central auditory processing disorder. Although recent studies indicate that hearing loss causes neuroinflammation in the auditory pathway, the mechanisms underlying hearing loss-related pathologies are still poorly understood. We examined neuroinflammation in the auditory cortex following noise-induced hearing loss (NIHL) and its role in tinnitus in rodent models. Our results indicate that NIHL is associated with elevated expression of proinflammatory cytokines and microglial activation-two defining features of neuroinflammatory responses-in the primary auditory cortex (AI). Genetic knockout of tumor necrosis factor alpha (TNF-α) or pharmacologically blocking TNF-α expression prevented neuroinflammation and ameliorated the behavioral phenotype associated with tinnitus in mice with NIHL. Conversely, infusion of TNF-α into AI resulted in behavioral signs of tinnitus in both wild-type and TNF-α knockout mice with normal hearing. Pharmacological depletion of microglia also prevented tinnitus in mice with NIHL. At the synaptic level, the frequency of miniature excitatory synaptic currents (mEPSCs) increased and that of miniature inhibitory synaptic currents (mIPSCs) decreased in AI pyramidal neurons in animals with NIHL. This excitatory-to-inhibitory synaptic imbalance was completely prevented by pharmacological blockade of TNF-α expression. These results implicate neuroinflammation as a therapeutic target for treating tinnitus and other hearing loss-related disorders.


Assuntos
Córtex Auditivo/fisiopatologia , Perda Auditiva Provocada por Ruído/fisiopatologia , Estimulação Acústica , Animais , Vias Auditivas/fisiopatologia , Citocinas/metabolismo , Perda Auditiva/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuroimunomodulação/imunologia , Ruído/efeitos adversos , Ratos , Ratos Sprague-Dawley , Zumbido/fisiopatologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
2.
J Neurotrauma ; 35(19): 2306-2316, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29649942

RESUMO

Traumatic brain injury (TBI) is a major cause of neurological disorder and death in civilian and military populations. It comprises two components-direct injury from the traumatic impact and secondary injury from ensuing neural inflammatory responses. Blocking tumor necrosis factor-alpha (TNF-α), a central regulator of neural inflammation, has been shown to improve functional recovery after TBI. However, the mechanisms underlying those therapeutic effects are still poorly understood. Here, we examined effects of 3,6'-dithiothalidomide (dTT), a potentially therapeutic TNF-α inhibitor, in mice with blast-induced TBI. We found that blast exposure resulted in elevated expression of TNF-α, activation of microglial cells, enhanced excitatory synaptic transmission, reduced inhibitory synaptic transmission, and a loss of parvalbumin-positive (PV+) inhibitory interneurons. Administration of dTT for 5 days after the blast exposure completely suppressed blast-induced increases in TNF-α transcription, largely reversed blasted-induced synaptic changes, and prevented PV+ neuron loss. However, blocking TNF-α expression by dTT failed to mitigate blast-induced microglial activation in the hippocampus, as evidenced by their non-ramified morphology. These results indicate that TNF-α plays a major role in modulating neuronal functions in blast-induced TBI and that it is a potential target for treatment of TBI-related brain disorders.


Assuntos
Traumatismos por Explosões/patologia , Lesões Encefálicas Traumáticas/patologia , Hipocampo/patologia , Interneurônios/patologia , Transmissão Sináptica/imunologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Animais , Traumatismos por Explosões/imunologia , Lesões Encefálicas Traumáticas/imunologia , Hipocampo/imunologia , Interneurônios/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Fator de Necrose Tumoral alfa/imunologia
3.
BMC Dev Biol ; 11: 20, 2011 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-21418646

RESUMO

BACKGROUND: FGF signalling regulates numerous aspects of early embryo development. During gastrulation in amniotes, epiblast cells undergo an epithelial to mesenchymal transition (EMT) in the primitive streak to form the mesoderm and endoderm. In mice lacking FGFR1, epiblast cells in the primitive streak fail to downregulate E-cadherin and undergo EMT, and cell migration is inhibited. This study investigated how FGF signalling regulates cell movement and gene expression in the primitive streak of chicken embryos. RESULTS: We find that pharmacological inhibition of FGFR activity blocks migration of cells through the primitive streak of chicken embryos without apparent alterations in the level or intracellular localization of E-cadherin. E-cadherin protein is localized to the periphery of epiblast, primitive streak and some mesodermal cells. FGFR inhibition leads to downregulation of a large number of regulatory genes in the preingression epiblast adjacent to the primitive streak, the primitive streak and the newly formed mesoderm. This includes members of the FGF, NOTCH, EPH, PDGF, and canonical and non-canonical WNT pathways, negative modulators of these pathways, and a large number of transcriptional regulatory genes. SNAI2 expression in the primitive streak and mesoderm is not altered by FGFR inhibition, but is downregulated only in the preingression epiblast region with no significant effect on E-cadherin. Furthermore, over expression of SNAIL has no discernable effect on E-cadherin protein levels or localization in epiblast, primitive streak or mesodermal cells. FGFR activity modulates distinct downstream pathways including RAS/MAPK and PI3K/AKT. Pharmacological inhibition of MEK or AKT indicate that these downstream effectors control discrete and overlapping groups of genes during gastrulation. FGFR activity regulates components of several pathways known to be required for cell migration through the streak or in the mesoderm, including RHOA, the non-canonical WNT pathway, PDGF signalling and the cell adhesion protein N-cadherin. CONCLUSIONS: In chicken embryos, FGF signalling regulates cell movement through the primitive streak by mechanisms that appear to be independent of changes in E-cadherin expression or protein localization. The positive and negative effects on large groups of genes by pharmacological inhibition of FGF signalling, including major signalling pathways and transcription factor families, indicates that the FGF pathway is a focal point of regulation during gastrulation in chicken.


Assuntos
Caderinas/genética , Movimento Celular , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Linha Primitiva/metabolismo , Proteínas ras/metabolismo , Animais , Western Blotting , Caderinas/metabolismo , Embrião de Galinha , Eletroporação , Fatores de Crescimento de Fibroblastos/genética , Gastrulação , Expressão Gênica , Hibridização In Situ , Análise em Microsséries , Proteínas Quinases Ativadas por Mitógeno/genética , Fosfatidilinositol 3-Quinases/genética , Reação em Cadeia da Polimerase , Linha Primitiva/embriologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/antagonistas & inibidores , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais , Fatores de Transcrição da Família Snail , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas ras/genética
4.
Gene Expr Patterns ; 6(5): 462-70, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16458617

RESUMO

Heart septation and valve malformations constitute the most common birth defects. These cardiac structures arise from the endocardial cushions through dynamic interactions between cells and the extracellular matrix (cardiac jelly). Targeted deletion of the hyaluronan synthase-2 (Has2) gene in mice results in an absence of cardiac jelly and endocardial cushions, a loss of vascular integrity, and embryonic death at E9.5. Despite the requirements for Has2 and its synthetic product hyaluronan (HA) in the developing cardiovascular system, little is known about the normal expression pattern of Has2 or the factors regulating Has2 gene transcription during development. Bmp signaling is an important regulator of cardiac myogenesis, and is also important for endocardial cushion formation. The current study defines the embryonic expression pattern of Has2 and explores the regulation of Has2 gene expression by Bmp signaling. In situ hybridization studies demonstrate dynamic Has2 expression patterns during myocardial cell development and cardiac tube formation, formation of the cardiac endocardial cushions, and cushion invasion by valve primordial cells. Despite overlapping regional expression of Bmp2 in the late gastrula anterior lateral endoderm and Has2 in the adjacent cardiogenic mesoderm, application of noggin-expressing CHO cells beneath the endoderm failed to perturb normal Has2 expression. Thus, in contrast to many genes expressed in the heart forming region, regulation of Has2 in the cardiogenic mesoderm is independent of Bmp signaling.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Glucuronosiltransferase/genética , Coração/embriologia , Transdução de Sinais , Animais , Células CHO , Embrião de Galinha , Cricetinae , Hialuronan Sintases , Camundongos , Morfogênese
5.
Development ; 131(17): 4371-80, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15294868

RESUMO

During embryonic development, the first blood vessels are formed through the aggregation and subsequent assembly of angioblasts (endothelial precursors) into a network of endothelial tubes, a process known as vasculogenesis. These first vessels generally form in mesoderm that is adjacent to endodermal tissue. Although specification of the angioblast lineage is independent of endoderm interactions, a signal from the endoderm is necessary for angioblasts to assemble into a vascular network and to undergo vascular tube formation. In this study, we show that endodermally derived sonic hedgehog is both necessary and sufficient for vascular tube formation in avian embryos. We also show that Hedgehog signaling is required for vascular tube formation in mouse embryos, and for vascular cord formation in cultured mouse endothelial cells. These results demonstrate a previously uncharacterized role for Hedgehog signaling in vascular development, and identify Hedgehog signaling as an important component of the molecular pathway leading to vascular tube formation.


Assuntos
Endotélio/citologia , Endotélio/embriologia , Transativadores/fisiologia , Animais , Células Cultivadas , Embrião de Galinha , Primers do DNA/química , Relação Dose-Resposta a Droga , Endoderma/metabolismo , Proteínas Hedgehog , Imuno-Histoquímica , Hibridização In Situ , Camundongos , Modelos Genéticos , Mutação , Neovascularização Patológica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Fatores de Tempo , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA