Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Heart Circ Physiol ; 325(1): H77-H88, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37145957

RESUMO

Arteriovenous fistulae (AVF) fail to mature more frequently in female patients compared with male patients, leading to inferior outcomes and decreased utilization. Since our mouse AVF model recapitulates sex differences in human AVF maturation, we hypothesized that sex hormones mediate these differences during AVF maturation. C57BL/6 mice (9-11 wk) were treated with aortocaval AVF surgery and/or gonadectomy. AVF hemodynamics were measured via ultrasound (days 0-21). Blood was collected for FACS and tissue for immunofluorescence and ELISA (days 3 and 7); wall thickness was assessed by histology (day 21). Inferior vena cava shear stress was higher in male mice (P = 0.0028) after gonadectomy, and they had increased wall thickness (22.0 ± 1.8 vs. 12.7 ± 1.2 µm; P < 0.0001). Conversely, female mice had decreased wall thickness (6.8 ± 0.6 vs. 15.3 ± 0.9 µm; P = 0.0002). Intact female mice had higher proportions of circulating CD3+ T cells on day 3 (P = 0.0043), CD4+ (P = 0.0003) and CD8+ T cells (P = 0.005) on day 7, and CD11b+ monocytes on day 3 (P = 0.0046). After gonadectomy, these differences disappeared. In intact female mice, CD3+ T cells (P = 0.025), CD4+ T cells (P = 0.0178), CD8+ T cells (P = 0.0571), and CD68+ macrophages (P = 0.0078) increased in the fistula wall on days 3 and 7. This disappeared after gonadectomy. Furthermore, female mice had higher IL-10 (P = 0.0217) and TNF-α (P = 0.0417) levels in their AVF walls than male mice. Sex hormones mediate AVF maturation, suggesting that hormone receptor signaling may be a target to improve AVF maturation.NEW & NOTEWORTHY After arteriovenous fistula creation, females have lower rates of maturation and higher rates of failure than males. In a mouse model of venous adaptation that recapitulates human fistula maturation, sex hormones may be mechanisms of the sexual dimorphism: testosterone is associated with reduced shear stress, whereas estrogen is associated with increased immune cell recruitment. Modulating sex hormones or downstream effectors suggests sex-specific therapies and could address disparities in sex differences in clinical outcomes.


Assuntos
Fístula Arteriovenosa , Derivação Arteriovenosa Cirúrgica , Humanos , Masculino , Feminino , Camundongos , Animais , Linfócitos T CD8-Positivos , Maturidade Sexual , Camundongos Endogâmicos C57BL , Derivação Arteriovenosa Cirúrgica/efeitos adversos , Modelos Animais de Doenças , Testosterona , Imunidade , Diálise Renal
2.
Arterioscler Thromb Vasc Biol ; 41(12): 2909-2922, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34670406

RESUMO

OBJECTIVE: Patients with end-stage renal disease depend on hemodialysis for survival. Although arteriovenous fistulae (AVF) are the preferred vascular access for hemodialysis, the primary success rate of AVF is only 30% to 50% within 6 months, showing an urgent need for improvement. PD-L1 (programmed death ligand 1) is a ligand that regulates T-cell activity. Since T cells have an important role during AVF maturation, we hypothesized that PD-L1 regulates T cells to control venous remodeling that occurs during AVF maturation. Approach and results: In the mouse aortocaval fistula model, anti-PD-L1 antibody (200 mg, 3×/wk intraperitoneal) was given to inhibit PD-L1 activity during AVF maturation. Inhibition of PD-L1 increased T-helper type 1 cells and T-helper type 2 cells but reduced regulatory T cells to increase M1-type macrophages and reduce M2-type macrophages; these changes were associated with reduced vascular wall thickening and reduced AVF patency. Inhibition of PD-L1 also inhibited smooth muscle cell proliferation and increased endothelial dysfunction. The effects of anti-PD-L1 antibody on adaptive venous remodeling were diminished in nude mice; however, they were restored after T-cell transfer into nude mice, indicating the effects of anti-PD-L1 antibody on venous remodeling were dependent on T cells. CONCLUSIONS: Regulation of PD-L1 activity may be a potential therapeutic target for clinical translation to improve AVF maturation.


Assuntos
Antígeno B7-H1/fisiologia , Diferenciação Celular , Linfócitos T/fisiologia , Remodelação Vascular/fisiologia , Animais , Anticorpos/fisiologia , Derivação Arteriovenosa Cirúrgica , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/imunologia , Modelos Animais de Doenças , Feminino , Falência Renal Crônica/terapia , Macrófagos/fisiologia , Masculino , Camundongos Nus , Diálise Renal
3.
Arterioscler Thromb Vasc Biol ; 41(3): e160-e174, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33472405

RESUMO

OBJECTIVE: Arteriovenous fistulae (AVF) are the preferred vascular access for hemodialysis, but the primary success rate of AVF remains poor. Successful AVF maturation requires vascular wall thickening and outward remodeling. A key factor determining successful AVF maturation is inflammation that is characterized by accumulation of both T-cells and macrophages. We have previously shown that anti-inflammatory (M2) macrophages are critically important for vascular wall thickening during venous remodeling; therefore, regulation of macrophage accumulation may be an important mechanism promoting AVF maturation. Since CD4+ T-cells such as T-helper type 1 cells, T-helper type 2 cells, and regulatory T-cells can induce macrophage migration, proliferation, and polarization, we hypothesized that CD4+ T-cells regulate macrophage accumulation to promote AVF maturation. Approach and Results: In a mouse aortocaval fistula model, T-cells temporally precede macrophages in the remodeling AVF wall. CsA (cyclosporine A; 5 mg/kg, sq, daily) or vehicle (5% dimethyl sulfoxide) was administered to inhibit T-cell function during venous remodeling. CsA reduced the numbers of T-helper type 1 cells, T-helper type 2, and regulatory T-cells, as well as M1- and M2-macrophage accumulation in the wall of the remodeling fistula; these effects were associated with reduced vascular wall thickening and increased outward remodeling in wild-type mice. However, these effects were eliminated in nude mice, showing that the effects of CsA on macrophage accumulation and adaptive venous remodeling are T-cell-dependent. CONCLUSIONS: T-cells regulate macrophage accumulation in the maturing venous wall to control adaptive remodeling. Regulation of T-cells during AVF maturation may be a strategy that can improve AVF maturation. Graphic Abstract: A graphic abstract is available for this article.


Assuntos
Derivação Arteriovenosa Cirúrgica/métodos , Ciclosporina/farmacologia , Macrófagos/fisiologia , Linfócitos T/efeitos dos fármacos , Remodelação Vascular/efeitos dos fármacos , Remodelação Vascular/fisiologia , Animais , Feminino , Imunossupressores/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Modelos Animais , Linfócitos T/imunologia , Linfócitos T/fisiologia
4.
Vasc Investig Ther ; 2(2): 33-41, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31608322

RESUMO

The increasing prevalence of chronic and end-stage renal disease creates an increased need for reliable vascular access, and although arteriovenous fistulae (AVF) are the preferred mode of hemodialysis access, 60% fail to mature and only 50% remain patent at one year. Fistulae mature by diameter expansion and wall thickening; this outward remodeling of the venous wall in the fistula environment relies on a delicate balance of extracellular matrix (ECM) remodeling, inflammation, growth factor secretion, and cell adhesion molecule upregulation in the venous wall. AVF failure occurs via two distinct mechanisms with early failure secondary to lack of outward remodeling, that is insufficient diameter expansion or wall thickening, whereas late failure occurs with excessive wall thickening due to neointimal hyperplasia (NIH) and insufficient diameter expansion in a previously functional fistula. In recent years, the molecular basis of AVF maturation and failure are becoming understood in order to develop potential therapeutic targets to aide maturation and prevent access loss. Erythropoietin-producing hepatocellular carcinoma (Eph) receptors, along with their ligands, ephrins, determine vascular identity and are critical for vascular remodeling in the embryo. Manipulation of Eph receptor signaling in adults, as well as downstream pathways, is a potential treatment strategy to improve the rates of AVF maturation and patency. This review examines our current understanding of molecular changes occurring following fistula creation, factors predictive of fistula success, and potential areas of intervention to decrease AVF failure.

5.
Sci Rep ; 9(1): 11046, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31363142

RESUMO

Arteriovenous fistulae (AVF) are the most common access created for hemodialysis, but up to 60% do not sustain dialysis within a year, suggesting a need to improve AVF maturation and patency. In a mouse AVF model, Akt1 regulates fistula wall thickness and diameter. We hypothesized that inhibition of the Akt1-mTORC1 axis alters venous remodeling to improve AVF patency. Daily intraperitoneal injections of rapamycin reduced AVF wall thickness with no change in diameter. Rapamycin decreased smooth muscle cell (SMC) and macrophage proliferation; rapamycin also reduced both M1 and M2 type macrophages. AVF in mice treated with rapamycin had reduced Akt1 and mTORC1 but not mTORC2 phosphorylation. Depletion of macrophages with clodronate-containing liposomes was also associated with reduced AVF wall thickness and both M1- and M2-type macrophages; however, AVF patency was reduced. Rapamycin was associated with improved long-term patency, enhanced early AVF remodeling and sustained reduction of SMC proliferation. These results suggest that rapamycin improves AVF patency by reducing early inflammation and wall thickening while attenuating the Akt1-mTORC1 signaling pathway in SMC and macrophages. Macrophages are associated with AVF wall thickening and M2-type macrophages may play a mechanistic role in AVF maturation. Rapamycin is a potential translational strategy to improve AVF patency.


Assuntos
Derivação Arteriovenosa Cirúrgica/métodos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirolimo/uso terapêutico , Remodelação Vascular/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Nefropatias/metabolismo , Nefropatias/terapia , Camundongos , Diálise Renal , Sirolimo/farmacologia
6.
Arterioscler Thromb Vasc Biol ; 39(4): 754-764, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30786746

RESUMO

Objective- Arteriovenous fistulae (AVF) are the most common access created for hemodialysis; however, many AVF fail to mature and require repeated intervention, suggesting a need to improve AVF maturation. Eph-B4 (ephrin type-B receptor 4) is the embryonic venous determinant that is functional in adult veins and can regulate AVF maturation. Cav-1 (caveolin-1) is the major scaffolding protein of caveolae-a distinct microdomain that serves as a mechanosensor at the endothelial cell membrane. We hypothesized that Cav-1 function is critical for Eph-B4-mediated AVF maturation. Approach and Results- In a mouse aortocaval fistula model, both Cav-1 mRNA and protein were increased in the AVF compared with control veins. Cav-1 KO (knockout) mice showed increased fistula wall thickening ( P=0.0005) and outward remodeling ( P<0.0001), with increased eNOS (endothelial NO synthase) activity compared with WT (wild type) mice. Ephrin-B2/Fc inhibited AVF outward remodeling in WT mice but not in Cav-1 KO mice and was maintained in Cav-1 RC (Cav-1 endothelial reconstituted) mice (WT, P=0.0001; Cav-1 KO, P=0.7552; Cav-1 RC, P=0.0002). Cavtratin-a Cav-1 scaffolding domain peptide-decreased AVF wall thickness in WT mice and in Eph-B4 het mice compared with vehicle alone (WT, P=0.0235; Eph-B4 het, P=0.0431); cavtratin also increased AVF patency (day 42) in WT mice ( P=0.0275). Conclusions- Endothelial Cav-1 mediates Eph-B4-mediated AVF maturation. The Eph-B4-Cav-1 axis regulates adaptive remodeling during venous adaptation to the fistula environment. Manipulation of Cav-1 function may be a translational strategy to enhance AVF patency.


Assuntos
Derivação Arteriovenosa Cirúrgica , Caveolina 1/fisiologia , Receptor EphB4/fisiologia , Transdução de Sinais/fisiologia , Veia Cava Inferior/fisiologia , Animais , Aorta Abdominal/cirurgia , Cavéolas/metabolismo , Caveolina 1/biossíntese , Caveolina 1/deficiência , Caveolina 1/genética , Caveolina 1/farmacologia , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos , Hemorreologia , Humanos , Pulmão/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/antagonistas & inibidores , Óxido Nítrico Sintase Tipo III/fisiologia , Fragmentos de Peptídeos/farmacologia , Remodelação Vascular/fisiologia , Veia Cava Inferior/cirurgia
7.
Neuron ; 101(3): 429-443.e4, 2019 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-30578106

RESUMO

Normal vascular development includes the formation and specification of arteries, veins, and intervening capillaries. Vein of Galen malformations (VOGMs) are among the most common and severe neonatal brain arterio-venous malformations, shunting arterial blood into the brain's deep venous system through aberrant direct connections. Exome sequencing of 55 VOGM probands, including 52 parent-offspring trios, revealed enrichment of rare damaging de novo mutations in chromatin modifier genes that play essential roles in brain and vascular development. Other VOGM probands harbored rare inherited damaging mutations in Ephrin signaling genes, including a genome-wide significant mutation burden in EPHB4. Inherited mutations showed incomplete penetrance and variable expressivity, with mutation carriers often exhibiting cutaneous vascular abnormalities, suggesting a two-hit mechanism. The identified mutations collectively account for ∼30% of studied VOGM cases. These findings provide insight into disease biology and may have clinical implications for risk assessment.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Mutação , Malformações da Veia de Galeno/genética , Efrinas/metabolismo , Feminino , Humanos , Masculino , Glicoproteínas de Membrana/genética , Metaloendopeptidases/genética , Linhagem , Penetrância , Receptor EphB4/genética , Transdução de Sinais , Malformações da Veia de Galeno/patologia
8.
Ann Vasc Dis ; 10(1): 8-16, 2017 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-29034014

RESUMO

Autogenous vein grafts remain the gold standard conduit for arterial bypass, particularly for the treatment of critical limb ischemia. Vein graft adaptation to the arterial environment, i.e., adequate dilation and wall thickening, contributes to the superior performance of vein grafts. However, abnormal venous wall remodeling with excessive neointimal hyperplasia commonly causes vein graft failure. Since the PREVENT trials failed to improve vein graft outcomes, new strategies focus on the adaptive response of the venous endothelial cells to the post-surgical arterial environment. Eph-B4, the determinant of venous endothelium during embryonic development, remains expressed and functional in adult venous tissue. After surgery, vein grafts lose their venous identity, with loss of Eph-B4 expression; however, arterial identity is not gained, consistent with loss of all vessel identity. In mouse vein grafts, stimulation of venous Eph-B4 signaling promotes retention of venous identity in endothelial cells and is associated with vein graft walls that are not thickened. Eph-B4 regulates downstream signaling pathways of relevance to vascular biology, including caveolin-1, Akt, and endothelial nitric oxide synthase (eNOS). Regulation of the Eph-B4 signaling pathway may be a novel therapeutic target to prevent vein graft failure.

9.
J Biomed Mater Res A ; 105(12): 3422-3431, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28877393

RESUMO

Polyester is commonly used in vascular surgery for patch angioplasty and grafts. We hypothesized that polyester patches heal by infiltration of arterial or venous progenitor cells depending on the site of implantation. Polyester patches were implanted into the Wistar rat aorta or inferior vena cava and explanted on day 7 or 30. Neointima that formed on polyester patches was thicker in the venous environment compared to the amount that formed on patches in the arterial environment. Venous patches had more cell proliferation and greater numbers of VCAM-positive and CD68-positive cells, whereas arterial patches had greater numbers of vimentin-positive and alpha-actin-positive cells. Although there were similar numbers of endothelial progenitor cells in the neointimal endothelium, cells in the arterial patch were Ephrin-B2- and notch-4-positive while those in the venous patch were Eph-B4- and COUP-TFII-positive. Venous patches treated with an arteriovenous fistula had decreased neointimal thickness; neointimal endothelial cells expressed Ephrin-B2 and notch-4 in addition to Eph-B4 and COUP-TFII. Polyester patches in the venous environment acquire venous identity, whereas patches in the arterial environment acquire arterial identity; patches in the fistula environment acquire dual arterial-venous identity. These data suggest that synthetic patches heal by acquisition of identity of their environment. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 3422-3431, 2017.


Assuntos
Aorta/citologia , Prótese Vascular/efeitos adversos , Neointima/etiologia , Poliésteres/efeitos adversos , Veia Cava Inferior/citologia , Angioplastia/efeitos adversos , Animais , Aorta/patologia , Aorta/cirurgia , Velocidade do Fluxo Sanguíneo , Proliferação de Células , Células Progenitoras Endoteliais/citologia , Células Progenitoras Endoteliais/patologia , Masculino , Neointima/patologia , Ratos Wistar , Veia Cava Inferior/patologia , Veia Cava Inferior/cirurgia
10.
Semin Vasc Surg ; 29(4): 153-171, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28779782

RESUMO

With the increasing prevalence of end-stage renal disease, there is a growing need for hemodialysis. Arteriovenous fistulae (AVF) are the preferred type of vascular access for hemodialysis, but maturation and failure continue to present significant barriers to successful fistula use. AVF maturation integrates outward remodeling with vessel wall thickening in response to drastic hemodynamic changes in the setting of uremia, systemic inflammation, oxidative stress, and pre-existent vascular pathology. AVF can fail due to both failure to mature adequately to support hemodialysis and development of neointimal hyperplasia that narrows the AVF lumen, typically near the fistula anastomosis. Failure due to neointimal hyperplasia involves vascular cell activation and migration and extracellular matrix remodeling with complex interactions of growth factors, adhesion molecules, inflammatory mediators, and chemokines, all of which result in maladaptive remodeling. Different strategies have been proposed to prevent and treat AVF failure based on current understanding of the modes and pathology of access failure; these approaches range from appropriate patient selection and use of alternative surgical strategies for fistula creation, to the use of novel interventional techniques or drugs to treat failing fistulae. Effective treatments to prevent or treat AVF failure require a multidisciplinary approach involving nephrologists, vascular surgeons, and interventional radiologists, careful patient selection, and the use of tailored systemic or localized interventions to improve patient-specific outcomes. This review provides contemporary information on the underlying mechanisms of AVF maturation and failure and discusses the broad spectrum of options that can be tailored for specific therapy.


Assuntos
Derivação Arteriovenosa Cirúrgica/métodos , Oclusão de Enxerto Vascular/terapia , Falência Renal Crônica/terapia , Diálise Renal , Derivação Arteriovenosa Cirúrgica/efeitos adversos , Oclusão de Enxerto Vascular/etiologia , Oclusão de Enxerto Vascular/fisiopatologia , Humanos , Falência Renal Crônica/diagnóstico , Falência Renal Crônica/epidemiologia , Prevalência , Fatores de Risco , Falha de Tratamento , Grau de Desobstrução Vascular
11.
Bone ; 60: 148-61, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24316420

RESUMO

Recent studies have indicated a role for a MECOM allele in susceptibility to osteoporotic fractures in humans. We have generated a mutation in Mecom in mouse (termed ME(m1)) via lacZ knock-in into the upstream transcription start site for the gene, resulting in disruption of Mds1 and Mds1-Evi1 transcripts, but not of Evi1 transcripts. We demonstrate that ME(m1/m1) mice have severe kyphoscoliosis that is reminiscent of human congenital or primary kyphoscoliosis. ME(m1/m1) mice appear normal at birth, but by 2weeks, they exhibit a slight lumbar lordosis and narrowed intervertebral space. This progresses to severe lordosis with disc collapse and synostosis, together with kyphoscoliosis. Bone formation and strength testing show that ME(m1/m1) mice have normal bone formation and composition but are osteopenic. While endochondral bone development is normal, it is markedly dysplastic in its organization. Electron micrographs of the 1week postnatal intervertebral discs reveals marked disarray of collagen fibers, consistent with an inherent weakness in the non-osseous connective tissue associated with the spine. These findings indicate that lack of ME leads to a complex defect in both osseous and non-osseous musculoskeletal tissues, including a marked vertebral osteopenia, degeneration of the IVD, and disarray of connective tissues, which is likely due to an inherent inability to establish and/or maintain components of these tissues.


Assuntos
Doenças Ósseas Metabólicas/complicações , Doenças Ósseas Metabólicas/patologia , Proteínas de Ligação a DNA/metabolismo , Deleção de Genes , Coluna Vertebral/anormalidades , Fatores de Transcrição/metabolismo , Animais , Fenômenos Biomecânicos , Doenças Ósseas Metabólicas/diagnóstico por imagem , Doenças Ósseas Metabólicas/genética , Colágeno/genética , Colágeno/ultraestrutura , Feminino , Marcação de Genes , Loci Gênicos/genética , Proteínas Hedgehog/genética , Humanos , Disco Intervertebral/diagnóstico por imagem , Disco Intervertebral/patologia , Cifose/congênito , Cifose/diagnóstico por imagem , Cifose/genética , Cifose/patologia , Lordose/congênito , Lordose/diagnóstico por imagem , Lordose/genética , Lordose/patologia , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/patologia , Proteína do Locus do Complexo MDS1 e EVI1 , Masculino , Camundongos , Mutação/genética , Osteogênese , Proto-Oncogenes , Receptor Tipo 1 de Hormônio Paratireóideo/genética , Coluna Vertebral/diagnóstico por imagem , Coluna Vertebral/patologia , Tendões/diagnóstico por imagem , Tendões/patologia , Tendões/ultraestrutura , Vértebras Torácicas/diagnóstico por imagem , Vértebras Torácicas/patologia , Microtomografia por Raio-X
12.
Biochemistry ; 47(12): 3697-704, 2008 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-18303859

RESUMO

Calreticulin is a Ca (2+)-buffering chaperone of the endoplasmic reticulum. The protein is highly expressed in embryonic heart but downregulated in postnatal heart, indicating that expression of calreticulin in the heart is highly regulated. In this study we identify GATA6 and Evi-1 transcription factors as new regulators of the calreticulin gene. In neonatal rat ventricular cardiomyocytes and mouse fibroblasts the calreticulin gene is activated by GATA6 but repressed by Evi-1. Furthermore, transactivation of the calreticulin gene by GATA6 is suppressed by Evi-1, suggesting an antagonistic role between both GATA6 and Evi-1. Using EMSA, ChIP analysis, and site-specific mutagenesis, we showed that GATA6 and Evi-1 bind to site 1 on the calreticulin promoter. GATA6 and Evi-1 are highly expressed early during cardiogenesis of ES cells, suggesting that they may regulate expression of the calreticulin gene during cardiac development.


Assuntos
Calreticulina/genética , Proteínas de Ligação a DNA/fisiologia , Fator de Transcrição GATA6/fisiologia , Proto-Oncogenes/fisiologia , Fatores de Transcrição/fisiologia , Animais , Imunoprecipitação da Cromatina , Ensaio de Desvio de Mobilidade Eletroforética , Proteína do Locus do Complexo MDS1 e EVI1 , Camundongos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Células NIH 3T3 , Regiões Promotoras Genéticas/efeitos dos fármacos , Regiões Promotoras Genéticas/fisiologia , Ratos
13.
J Biol Chem ; 280(35): 30712-22, 2005 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-16006653

RESUMO

The leukemia-associated protein EVI1 possesses seven zinc fingers within an N-terminal domain (amino acids 1-250) that binds to GACAAGATA. Single amino acid missense mutants of EVI1 were developed that failed to bind DNA either in vitro, as assessed by gel shift assay, or in vivo, as shown by transactivation studies. Specifically, mutation R205N lacks high affinity binding to the GACAAGATA motif. Putative EVI1 target genes were identified by using an EVI1-(1-250)-VP16 fusion protein that acts as a transcriptional activator with the binding specificity of EVI1. Sixteen genes induced in NIH 3T3 cells by wild type EVI1-VP16 but not by mutant forms were identified. Sequence analysis revealed evolutionarily conserved GACAAGATA-like motifs within 10 kb of their transcription start sites, and by chromatin immunoprecipitation in fibroblasts, we showed occupancy of many of these sites by EVI1-VP16. To assess whether native EVI1 binds to these sites in EVI1-transformed myeloid cells, we performed chromatin immunoprecipitation in 32Dcl3 and NFS58 cells, using anti-EVI1 antisera, and we showed that the majority of these sites is bound by wild type EVI1. These putative target genes include Gadd45g, Gata2, Zfpm2/Fog2, Skil (SnoN), Klf5 (BTEB2), Dcn, and Map3k14 (Nik). In this study we demonstrated for the first time that the N-terminal DNA binding domain of EVI1 has the capacity to bind to endogenous genes. We hypothesized that these genes play a critical role in EVI1-induced transformation.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Dedos de Zinco , Sequência de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação , DNA/genética , DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteína Vmw65 do Vírus do Herpes Simples/genética , Proteína Vmw65 do Vírus do Herpes Simples/metabolismo , Humanos , Proteína do Locus do Complexo MDS1 e EVI1 , Camundongos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação de Sentido Incorreto , Células NIH 3T3 , Análise de Sequência com Séries de Oligonucleotídeos , Conformação Proteica , Proto-Oncogenes/genética , Proteínas Recombinantes de Fusão/genética , Fatores de Transcrição/genética
14.
Proc Natl Acad Sci U S A ; 99(9): 6041-6, 2002 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-11983899

RESUMO

Signal transduction through epidermal growth factor receptors (EGFRs) is essential for the growth and development of multicellular organisms. A genetic screen for regulators of EGFR signaling has led to the identification of Sprouty, a cell autonomous inhibitor of EGF signaling that is transcriptionally induced by the pathway. However, the molecular mechanisms by which Sprouty exerts its antagonistic effect remain largely unknown. Here we have used transient expression in human cells to investigate the functional properties of human Sprouty (hSpry) proteins. Ectopically expressed full-length hSpry1 and hSpry2 induce the potentiation of EGFR-mediated mitogen-activated protein (MAP) kinase activation. In contrast, truncation mutants of hSpry1 and hSpry2 containing the highly conserved carboxyl-terminal cysteine-rich domain inhibit EGF-induced MAP kinase activation. The potentiating effect of the full-length hSpry2 proteins on EGF signaling is mediated by the amino-terminal domain and results from the sequestration of c-Cbl, which in turn leads to the inhibition of EGFR ubiquitination and degradation. These results indicate that hSpry2 can function both as a negative and positive regulator of EGFR-mediated MAP kinase signaling in a domain-dependent fashion. A dual function of this kind could provide a mechanism for achieving proper balance between the activation and repression of EGFR signaling.


Assuntos
Proteínas de Drosophila , Fator de Crescimento Epidérmico/metabolismo , Proteínas de Insetos/metabolismo , Proteínas de Membrana , Proteínas/fisiologia , Transdução de Sinais , Ubiquitina-Proteína Ligases , Animais , Western Blotting , Células CHO , Cricetinae , Cisteína/química , DNA Complementar/metabolismo , Regulação para Baixo , Receptores ErbB/metabolismo , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Sistema de Sinalização das MAP Quinases , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Plasmídeos/metabolismo , Testes de Precipitina , Estrutura Terciária de Proteína , Proteínas/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-cbl , Fatores de Tempo , Transcrição Gênica , Transfecção , Ubiquitina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA