Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Int J Biol Macromol ; 263(Pt 2): 130405, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38403213

RESUMO

The clear cell renal cell carcinoma (ccRCC) spotlighted the poorest survival, while chromophobe renal cell carcinoma (chRCC) was associated with the best survival. Earlier studies corroborated vitamin D receptor (VDR) was a promising molecular for improving the prognosis of RCC. In contrast to VDRA, the one of VDR isoforms, VDRB1 (VDR isoform B1) has an N-terminal extension of 50 amino acids and is less ligand-dependent. However, the functional differences between VDRA and VDRB1, and their roles in the prognosis of ccRCC and chRCC, have not been investigated. In the present study, we uncovered that the transcripts related to vitamin D pathway and cellular calcium signaling were effectively decreased in the context of ccRCC, yet failed to exert a comparable effect within chRCC. Specially, minimally levels of VDRA wherein kidneys of patients suffering from ccRCC predict shorter survival time. In addition, the protein expressions for ß-catenin/Smad3 pathway and DNA damage and repair pathways were obviously impeded in VDRA-overexpressed ccRCC cells, yet this inhibitory effect was conspicuously absent in enable VDRB1 cells. Our results provide a new idea to improve the prognosis of ccRCC via VDRA upregulation.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , beta Catenina/genética , Rim/metabolismo , Dano ao DNA
2.
Nat Commun ; 12(1): 5966, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34645815

RESUMO

The BRCA2 tumor suppressor protects genome integrity by promoting homologous recombination-based repair of DNA breaks, stability of stalled DNA replication forks and DNA damage-induced cell cycle checkpoints. BRCA2 deficient cells display the radio-resistant DNA synthesis (RDS) phenotype, however the mechanism has remained elusive. Here we show that cells without BRCA2 are unable to sufficiently restrain DNA replication fork progression after DNA damage, and the underrestrained fork progression is due primarily to Primase-Polymerase (PRIMPOL)-mediated repriming of DNA synthesis downstream of lesions, leaving behind single-stranded DNA gaps. Moreover, we find that BRCA2 associates with the essential DNA replication factor MCM10 and this association suppresses PRIMPOL-mediated repriming and ssDNA gap formation, while having no impact on the stability of stalled replication forks. Our findings establish an important function for BRCA2, provide insights into replication fork control during the DNA damage response, and may have implications in tumor suppression and therapy response.


Assuntos
Proteína BRCA2/genética , DNA Primase/genética , DNA de Neoplasias/genética , DNA de Cadeia Simples/genética , DNA Polimerase Dirigida por DNA/genética , Proteínas de Manutenção de Minicromossomo/genética , Enzimas Multifuncionais/genética , Reparo de DNA por Recombinação , Proteína BRCA2/antagonistas & inibidores , Proteína BRCA2/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Dano ao DNA , DNA Helicases/antagonistas & inibidores , DNA Helicases/genética , DNA Helicases/metabolismo , DNA Primase/antagonistas & inibidores , DNA Primase/metabolismo , Replicação do DNA , DNA de Neoplasias/metabolismo , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Regulação Neoplásica da Expressão Gênica , Instabilidade Genômica , Células HEK293 , Células HeLa , Humanos , Proteínas de Manutenção de Minicromossomo/antagonistas & inibidores , Proteínas de Manutenção de Minicromossomo/metabolismo , Enzimas Multifuncionais/antagonistas & inibidores , Enzimas Multifuncionais/metabolismo , Osteoblastos/metabolismo , Osteoblastos/patologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Int J Mol Sci ; 22(6)2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33809929

RESUMO

The occurrence of distant tumor metastases is a major barrier in non-small cell lung cancer (NSCLC) therapy, and seriously affects clinical treatment and patient prognosis. Recently, long non-coding RNAs (lncRNAs) have been demonstrated to be crucial regulators of metastasis in lung cancer. The aim of this study was to reveal the underlying mechanisms of a novel lncRNA LNC CRYBG3 in regulating NSCLC metastasis. Experimental results showed that LNC CRYBG3 was upregulated in NSCLC cells compared with normal tissue cells, and its level was involved in these cells' metastatic ability. Exogenously overexpressed LNC CRYBG3 increased the metastatic ability and the protein expression level of the metastasis-associated proteins Snail and Vimentin in low metastatic lung cancer HCC827 cell line. In addition, LNC CRYBG3 contributed to HCC827 cell metastasis in vivo. Mechanistically, LNC CRYBG3 could directly combine with eEF1A1 and promote it to move into the nucleus to enhance the transcription of MDM2. Overexpressed MDM2 combined with MDM2 binding protein (MTBP) to reduce the binding of MTBP with ACTN4 and consequently increased cell migration mediated by ACTN4. In conclusion, the LNC CRYBG3/eEF1A1/MDM2/MTBP axis is a novel signaling pathway regulating tumor metastasis and may be a potential therapeutic target for NSCLC treatment.


Assuntos
Proteínas de Transporte/metabolismo , Cristalinas/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Fator 1 de Elongação de Peptídeos/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , RNA Longo não Codificante/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/patologia , Camundongos Endogâmicos NOD , Camundongos SCID , Metástase Neoplásica , Ligação Proteica , RNA Longo não Codificante/genética , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Am J Pathol ; 191(1): 66-78, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33039352

RESUMO

BCCIP was originally identified as a BRCA2 and CDKN1A/p21 interaction protein. Although a partial loss of BCCIP function is sufficient to trigger genomic instability and tumorigenesis, complete deletion of BCCIP is lethal to cells. Using Rosa26-CreERT2 mouse models, we found that induced Bccip deletion in adult mice caused an acute intestinal epithelial denudation that cannot be relieved by co-deletion of Trp53. The critical role of Bccip in intestine epithelial renewal was verified with a Villin-CreERT2 mouse model. The epithelium degeneration was associated with a rapid loss of the proliferative capability of the crypt progenitor cells in vivo, lack of crypt base columnar stem cell markers, and a failure of in vitro crypt organoid growth. RNA-Seq analysis of freshly isolated intestinal crypt cells showed that Bccip deletion caused an overwhelming down-regulation of genes involved in mitotic cell division but an up-regulation of genes involved in apoptosis and stress response to microbiomes. Our data not only indicate that intestinal epithelium is the most sensitive tissue to whole-body deletion of Bccip but also point to Bccip as a novel and critical factor for the proliferation of the intestinal progenitors. These findings have significant implications for understanding why a hypomorphic loss of BCCIP functions is more relevant to tumorigenesis.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Mucosa Intestinal/metabolismo , Regeneração/fisiologia , Animais , Proliferação de Células/fisiologia , Camundongos , Células-Tronco/metabolismo
5.
Nucleic Acids Res ; 48(22): 12817-12832, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33245766

RESUMO

Ribosome biogenesis is a fundamental process required for cell proliferation. Although evolutionally conserved, the mammalian ribosome assembly system is more complex than in yeasts. BCCIP was originally identified as a BRCA2 and p21 interacting protein. A partial loss of BCCIP function was sufficient to trigger genomic instability and tumorigenesis. However, a complete deletion of BCCIP arrested cell growth and was lethal in mice. Here, we report that a fraction of mammalian BCCIP localizes in the nucleolus and regulates 60S ribosome biogenesis. Both abrogation of BCCIP nucleolar localization and impaired BCCIP-eIF6 interaction can compromise eIF6 recruitment to the nucleolus and 60S ribosome biogenesis. BCCIP is vital for a pre-rRNA processing step that produces 12S pre-rRNA, a precursor to the 5.8S rRNA. However, a heterozygous Bccip loss was insufficient to impair 60S biogenesis in mouse embryo fibroblasts, but a profound reduction of BCCIP was required to abrogate its function in 60S biogenesis. These results suggest that BCCIP is a critical factor for mammalian pre-rRNA processing and 60S generation and offer an explanation as to why a subtle dysfunction of BCCIP can be tumorigenic but a complete depletion of BCCIP is lethal.


Assuntos
Carcinogênese/genética , Proteínas de Ciclo Celular/genética , Proliferação de Células/genética , Ribossomos/genética , Animais , Proteína BRCA2/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Fatores de Iniciação em Eucariotos/genética , Fibroblastos , Instabilidade Genômica/genética , Humanos , Camundongos , Células NIH 3T3 , Mapas de Interação de Proteínas/genética , RNA Ribossômico/genética , RNA Ribossômico 5,8S/genética , Subunidades Ribossômicas Maiores de Eucariotos/genética
6.
Am J Pathol ; 190(6): 1175-1187, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32201259

RESUMO

Hepatocellular carcinoma (HCC) is the most common form of liver tumors. Although HCC is associated with chronic viral infections, alcoholic cirrhosis, and nonalcoholic fatty liver disease, genetic factors that contribute to the HCC risk remain unknown. The BRCA2 DNA repair associated (BRCA2) and cyclin-dependent kinase inhibitor 1A (CDKN1A) interacting protein, known as BCCIP, are essential for cell viability and maintenance of genomic stability. In this study, we established a new genetically engineered mouse model with Bccip deficiency. Mosaic or heterozygous Bccip deletion conferred an increased risk of spontaneous liver tumorigenesis and B-cell lymphoma development at old age. These abnormalities are accompanied with chronic inflammation, histologic features of nonalcoholic steatohepatitis, keratin and ubiquitin aggregates within cytoplasmic Mallory-Denk bodies, and changes of the intracellular distribution of high-mobility group box 1 protein. Our study suggests BCCIP dysregulation as a risk factor for HCC and offers a novel mouse model for future investigations of nonviral or nonalcoholic causes of HCC development.


Assuntos
Proteína BRCA2/genética , Carcinoma Hepatocelular/genética , Proteínas de Ciclo Celular/genética , Neoplasias Hepáticas/genética , Linfoma de Células B/genética , Animais , Proteína BRCA2/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Proteínas de Ciclo Celular/metabolismo , Heterozigoto , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Linfoma de Células B/metabolismo , Linfoma de Células B/patologia , Camundongos , Camundongos Knockout , Mosaicismo
7.
PLoS One ; 11(5): e0155725, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27187621

RESUMO

Persistent DNA damage is considered as a main cause of cellular senescence induced by ionizing radiation. However, the molecular bases of the DNA damage and their contribution to cellular senescence are not completely clear. In this study, we found that both heavy ions and X-rays induced senescence in human uveal melanoma 92-1 cells. By measuring senescence associated-ß-galactosidase and cell proliferation, we identified that heavy ions were more effective at inducing senescence than X-rays. We observed less efficient repair when DNA damage was induced by heavy ions compared with X-rays and most of the irreparable damage was complex of single strand breaks and double strand breaks, while DNA damage induced by X-rays was mostly repaired in 24 hours and the remained damage was preferentially associated with telomeric DNA. Our results suggest that DNA damage induced by heavy ion is often complex and difficult to repair, thus presents as persistent DNA damage and pushes the cell into senescence. In contrast, persistent DNA damage induced by X-rays is preferentially associated with telomeric DNA and the telomere-favored persistent DNA damage contributes to X-rays induced cellular senescence. These findings provide new insight into the understanding of high relative biological effectiveness of heavy ions relevant to cancer therapy and space radiation research.


Assuntos
Senescência Celular/genética , Senescência Celular/efeitos da radiação , Dano ao DNA , Carbono , Linhagem Celular Tumoral , Relação Dose-Resposta à Radiação , Íons Pesados , Humanos , Transferência Linear de Energia , Telômero , Raios X , beta-Galactosidase/metabolismo
8.
RNA Biol ; 11(9): 1189-98, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25483041

RESUMO

The mechanisms of radiation-induced bystander effects (RIBE) have been investigated intensively over the past two decades. Although quite a few reports demonstrated that cytokines such as TGF-ß1 are induced within the directly irradiated cells and play critical roles in mediating the bystander effects, little is known about the signaling pathways that occur in bystander cells. The crucial question as to why RIBE signals cannot be infinitely transmitted, therefore, remains unclear. In the present study, we showed that miR-663, a radiosensitive microRNA, participates in the regulation of biological effects in both directly irradiated and bystander cells via its targeting of TGF-ß1. MiR-663 was downregulated, while TGFB1 was upregulated in directly irradiated cells. The regulation profile of miR-663 and TGFB1, on the other hand, was reversed in bystander cells, in which an elevated miR-663 expression was exhibited and led to downregulation of TGF-ß1. Further studies revealed that miR-663 interacts with TGFB1 directly and that through its binding to the core regulation sequence, miR-663 suppresses the expression of TGFB1. Based on the results, we propose that miR-663 inhibits the propagation of RIBE in a feedback mode, in which the induction of TGF-ß1 by reduced miR-663 in directly irradiated cells leads to increased level of miR-663 in bystander cells. The upregulation of miR-663 in turn suppresses the expression of TGF-ß1 and limits further transmission of the bystander signals.


Assuntos
Efeito Espectador/efeitos da radiação , Retroalimentação Fisiológica , Regulação da Expressão Gênica/efeitos da radiação , MicroRNAs/genética , Radiação Ionizante , Fator de Crescimento Transformador beta1/metabolismo , Apoptose/efeitos da radiação , Western Blotting , Efeito Espectador/genética , Comunicação Celular/efeitos da radiação , Proliferação de Células/efeitos da radiação , Células Cultivadas , Dano ao DNA/efeitos da radiação , Ensaio de Imunoadsorção Enzimática , Imunofluorescência , Humanos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos da radiação , Fator de Crescimento Transformador beta1/genética , Ensaio Tumoral de Célula-Tronco
9.
Radiol Oncol ; 48(2): 142-54, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24991204

RESUMO

BACKGROUND: Carbon ion therapy may be better against cancer than the effects of a photon beam. To investigate a biological advantage of carbon ion beam over X-rays, the radioresistant cell line HeLa cells were used. Radiation-induced changes in the biological processes were investigated post-irradiation at 1 h by a clinically relevant radiation dose (2 Gy X-ray and 2 Gy carbon beam). The differential expression proteins were collected for analysing biological effects. MATERIALS AND METHODS: The radioresistant cell line Hela cells were used. In our study, the stable isotope labelling with amino acids (SILAC) method coupled with 2D-LC-LTQ Orbitrap mass spectrometry was applied to identity and quantify the differentially expressed proteins after irradiation. The Western blotting experiment was used to validate the data. RESULTS: A total of 123 and 155 significantly changed proteins were evaluated with treatment of 2 Gy carbon and X-rays after radiation 1 h, respectively. These deregulated proteins were found to be mainly involved in several kinds of metabolism processes through Gene Ontology (GO) enrichment analysis. The two groups perform different response to different types of irradiation. CONCLUSIONS: The radioresistance of the cancer cells treated with 2 Gy X-rays irradiation may be largely due to glycolysis enhancement, while the greater killing effect of 2 Gy carbon may be due to unchanged glycolysis and decreased amino acid metabolism.

10.
Cell Cycle ; 12(9): 1424-32, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23574719

RESUMO

Diploid cells undergoing senescence and mitotic slippage have been reported in the literature. However, the mechanisms triggering senescence in long-term G2-arrested cells are currently unclear. Previously, we reported that the cell cycle of the human uveal melanoma cell line, 92-1, is suspended for up to 6 d upon exposure to 10 Gy ionizing radiation (IR), followed by senescence. In the current study, we initially distinguished senescence in long-term blocked 92-1 cells from mitotic slippage by confirming the blockage of cells in the G2 phase. We subsequently showed that the genes essential for G2-M transition are prematurely downregulated at both the transcriptional and translational levels. Furthermore, levels of the G1-specific markers, Cyclin D1 and Caveolin-1, were distinctly increased, while S/G2-specific markers, Cyclin B1 and Aurora A, were significantly downregulated. These findings collectively imply that long-term G2-arrested cells undergo senescence via G2 slippage. To our knowledge, this is the first study to report that the cellular process of G2 slippage is the mechanism responsible for senescence of cells under long-term G2 arrest.


Assuntos
Senescência Celular/efeitos da radiação , Fase G1/efeitos da radiação , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos da radiação , Radiação Ionizante , Linhagem Celular Tumoral , Senescência Celular/genética , Regulação para Baixo/genética , Regulação para Baixo/efeitos da radiação , Fase G1/genética , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Regulação da Expressão Gênica/efeitos da radiação , Humanos , Mitose/genética , Mitose/efeitos da radiação , Receptores Notch/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/efeitos da radiação , Estatísticas não Paramétricas , Fatores de Tempo , Raios X
11.
J Radiat Res ; 54(4): 649-62, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23447694

RESUMO

Melanoma is a malignant tumor with high invasive and metastatic properties. Though radiation is the major therapy for melanoma, its radio-resistance has been shown to severely influence the clinical outcome. So it is imperative to enhance the sensitivity of uveal melanoma cells to radiotherapy. Previously, we found that the cell cycle of 92-1 uveal melanoma cells was suspended and remained unchanged for up to 5 days after exposure to 10 Gy of X-rays, which might be relevant to the high radio-sensitivity of 92-1 cells. To further investigate the cell cycle suspension-associated proteins, we employed two analyses with stable isotope labeling with amino acids in cell culture technology and two-dimensional liquid chromatography tandem mass spectrometry. Cells were incubated for 15 h or 48 h after irradiation with 10 Gy of X-rays. We identified a total of 737 proteins at 15 h (Group A) and 530 proteins at 48 h post-irradiation (Group B). The gene ontology biological pathway was used to obtain a systems level view of proteome changes in 92-1cells under cell cycle suspension. We further selected the significantly changed proteins for investigation of their potential contribution to cell cycle suspension, growth arrest and cell senescence. These proteins are involved in the cell cycle, stress response, glycolysis and the tricarboxylic acid cycle, etc. Our study expected to reveal potential marker proteins associated with cell suspension induced by irradiation, which might contribute to understanding the mechanism beyond the cell cycle suspension.


Assuntos
Ciclo Celular/efeitos da radiação , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Melanoma/metabolismo , Proteômica/métodos , Neoplasias Uveais/metabolismo , Linhagem Celular Tumoral , Cromatografia Líquida , Biologia Computacional , Perfilação da Expressão Gênica , Glicólise , Humanos , Proteoma , Radiação Ionizante , Espectrometria de Massas em Tandem , Fatores de Tempo , Raios X
12.
RNA Biol ; 9(10): 1247-54, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22922797

RESUMO

Alterations in microRNA (miRNA) expression have been observed in cells subjected to exogenous stresses, implying that miRNAs play an important role in cellular stress response; however, the underlying mechanism is still largely unknown. In the present study, we found that miR-3928 was implicated in cellular response to ionizing radiation. After exposed to X-rays, miR-3928 expression increased in 1.5 h and then decreased, meanwhile Dicer, a key component in the miRNA processing machinery, increased gradually. An oscillation was observed in the expression of both mature miR-3928 and Dicer mRNA from 2 h to 3.5 h in irradiated cells. Then, we verified that miR-3928 directly bound to the 3'-untranslated region of Dicer mRNA. Consequently, Dicer expression was suppressed and the maturation of other miRNAs including miR-185, miR-300, and miR-663, was inhibited. Overexpression of miR-3928 induced DNA damage, activated ATR, and phosphorylated Chk1 accompanied by G1 arrest. Taken together, these findings replenished ATR/Chk1 pathway by revealing a novel miRNA regulatory network in response to exogenous stress, in which miR-3928 plays an important role in regulating the expression of Dicer.


Assuntos
Proteínas de Ciclo Celular/genética , RNA Helicases DEAD-box/genética , Regulação da Expressão Gênica/efeitos da radiação , MicroRNAs/genética , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/genética , Ribonuclease III/genética , Transdução de Sinais/efeitos da radiação , Regiões 3' não Traduzidas , Proteínas Mutadas de Ataxia Telangiectasia , Sítios de Ligação , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem , RNA Helicases DEAD-box/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos da radiação , Humanos , MicroRNAs/metabolismo , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Ribonuclease III/metabolismo , Raios X
13.
Cell Cycle ; 10(9): 1468-76, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21455017

RESUMO

Cell cycle checkpoint is a self-protective mechanism for cells to monitor genome integrity and ensure the high-fidelity transmission of genetic information to daughter cells. Insufficient function of cell cycle checkpoints has been demonstrated to partially account for tumor initiation, promotion and progression. In the ten melanoma cell lines that we tested in preliminary experiments, two human uveal melanoma cell lines, 92-1 and OCM-1, were found to be significantly different in terms of radiosensitivity but similar in DNA repair ability. Evident G 2 arrest was induced in both cell types and the maximum was reached at 16 h after irradiation regardless of X-rays or high-LET carbon beams. OCM-1 cells overrode the G 2 arrest and reentered the cell cycle right after reaching the maximum, whereas 92-1 could not. Upon 10 Gy of radiation, the cell cycle of 92-1 was suspended and remained unchanged for up to 5 d. The cell cycle suspension is a unique process lurking in G 2 arrest and related to cellular radiosensitivity. Its induction is dose-dependent and there is a dose threshold for it. The degradation of Cyclin B1 has been found related to the cell cycle suspension though, the mechanism of cell cycle suspension is still under investigation. Basing on our knowledge, this is the first report on cell cycle suspension and we present here a de novo mechanism to cellular radiosensitivity. Further clarification of the mechanism underlying cell cycle suspension is believed to be of significance in tumor radiosensitization or even direct tumor control.


Assuntos
Neoplasias da Coroide/etiologia , Neoplasias da Coroide/patologia , Pontos de Checagem da Fase G2 do Ciclo Celular/fisiologia , Fase G2/fisiologia , Melanoma Experimental/etiologia , Melanoma Experimental/patologia , Cafeína/farmacologia , Carbono , Divisão Celular/efeitos dos fármacos , Divisão Celular/fisiologia , Divisão Celular/efeitos da radiação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos da radiação , Neoplasias da Coroide/tratamento farmacológico , Relação Dose-Resposta à Radiação , Fase G2/efeitos dos fármacos , Fase G2/efeitos da radiação , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos da radiação , Raios gama , Humanos , Melanoma Experimental/tratamento farmacológico , Inibidores de Fosfodiesterase/farmacologia , Estudos Prospectivos , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA