Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cureus ; 16(6): e62037, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38989346

RESUMO

Infantile hyaline fibromatosis syndrome (HFS) is an ultra-rare genetic condition characterized by the deposition of hyaline material in the skin, muscle, and viscera. Potential complications include debilitating joint contractures, coarse facial features, recurrent infections, failure to thrive, and death. Here, we present the case of a six-month-old infant with a history of painful extremity contractures, global developmental delay, neck hemangioma, and feeding intolerance presenting to our institution with abdominal distension. The multi-systemic, rapidly progressing, severe nature of her symptoms prompted consultation with inpatient pediatric genetics. Per their recommendation, rapid whole-genome sequencing (rWGS) was done with Fabric GEM®-assisted artificial intelligence (Fabric Genomics, Oakland, California, United States) at Rady Children's Hospital Institute for Genomic Medicine (San Diego, California, United States), revealing homozygous pathogenic variant c.652T>C; P.Cys218Arg in the ANTXR2 gene consistent with HFS. This case was significant not only for its rarity, but also its early manifestation of symptoms, wide range of affected body systems, and severity of symptoms, which together present a fascinating diagnostic dilemma for future clinicians that should be taken into consideration. It also highlights the increasing utility of AI-assisted rWGS as a diagnostic tool for medically complex patients with unknown multisystemic hereditary conditions.

2.
Nature ; 616(7956): 339-347, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36991126

RESUMO

There is a need to develop effective therapies for pancreatic ductal adenocarcinoma (PDA), a highly lethal malignancy with increasing incidence1 and poor prognosis2. Although targeting tumour metabolism has been the focus of intense investigation for more than a decade, tumour metabolic plasticity and high risk of toxicity have limited this anticancer strategy3,4. Here we use genetic and pharmacological approaches in human and mouse in vitro and in vivo models to show that PDA has a distinct dependence on de novo ornithine synthesis from glutamine. We find that this process, which is mediated through ornithine aminotransferase (OAT), supports polyamine synthesis and is required for tumour growth. This directional OAT activity is usually largely restricted to infancy and contrasts with the reliance of most adult normal tissues and other cancer types on arginine-derived ornithine for polyamine synthesis5,6. This dependency associates with arginine depletion in the PDA tumour microenvironment and is driven by mutant KRAS. Activated KRAS induces the expression of OAT and polyamine synthesis enzymes, leading to alterations in the transcriptome and open chromatin landscape in PDA tumour cells. The distinct dependence of PDA, but not normal tissue, on OAT-mediated de novo ornithine synthesis provides an attractive therapeutic window for treating patients with pancreatic cancer with minimal toxicity.


Assuntos
Ornitina-Oxo-Ácido Transaminase , Neoplasias Pancreáticas , Poliaminas , Animais , Humanos , Camundongos , Arginina/deficiência , Arginina/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Ornitina/biossíntese , Ornitina/metabolismo , Ornitina-Oxo-Ácido Transaminase/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Poliaminas/metabolismo , Microambiente Tumoral
3.
Pediatr Res ; 90(3): 565-575, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33446917

RESUMO

BACKGROUND: Preterm infants with bronchopulmonary dysplasia (BPD) have lifelong increased risk of respiratory morbidities associated with environmental pathogen exposure and underlying mechanisms are poorly understood. The resident immune cells of the lung play vital roles in host defense. However, the effect of perinatal events associated with BPD on pulmonary-specific immune cells is not well understood. METHODS: We used a double-hit model of BPD induced by prenatal chorioamnionitis followed by postnatal hyperoxia, and performed a global transcriptome analysis of all resident pulmonary immune cells. RESULTS: We show significant up-regulation of genes involved in chemokine-mediated signaling and immune cell chemotaxis, and down-regulation of genes involved in multiple T lymphocyte functions. Multiple genes involved in T cell receptor signaling are downregulated and Cd8a gene expression remains downregulated at 2 months of age in spite of recovery in normoxia for 6 weeks. Furthermore, the proportion of CD8a+CD3+ pulmonary immune cells is decreased. CONCLUSIONS: Our study has highlighted that perinatal lung inflammation in a double-hit model of BPD results in short- and long-term dysregulation of genes associated with the pulmonary T cell receptor signaling pathway, which may contribute to increased environmental pathogen-associated respiratory morbidities seen in children and adults with BPD. IMPACT: In a translationally relevant double-hit model of BPD induced by chorioamnionitis and postnatal hyperoxia, we identified pulmonary immune cell-specific transcriptomic changes and showed that T cell receptor signaling genes are downregulated in short term and long term. This is the first comprehensive report delineating transcriptomic changes in resident immune cells of the lung in a translationally relevant double-hit model of BPD. Our study identifies novel resident pulmonary immune cell-specific targets for potential therapeutic modulation to improve short- and long-term respiratory health of preterm infants with BPD.


Assuntos
Displasia Broncopulmonar/genética , Corioamnionite/patologia , Hiperóxia/complicações , Pulmão/imunologia , Transcriptoma , Animais , Displasia Broncopulmonar/etiologia , Modelos Animais de Doenças , Feminino , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Gravidez , Ratos , Ratos Sprague-Dawley
4.
Onco Targets Ther ; 13: 12225-12241, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33273828

RESUMO

BACKGROUND: Monoclonal antibodies (mAbs) that target the programmed cell death-1 (PD-1)/programmed death-ligand 1 (PD-L1) immune checkpoint have demonstrated substantial clinical benefit for a variety of solid tumors. However, their applications in patients with hepatocellular carcinoma (HCC) are reported with unclear molecular mechanisms. Here, we report a novel mouse anti-human PD-1 mAb that can reverse the immunosuppressive effect of HePG2 cells on Jurkat cells. MATERIALS AND METHODS: HepG2 liver cancer cells, which were induced to overexpress PD-L1 by IFN-γ, were co-cultured with PHA-activated Jurkat lymphocytic cells to investigate the immunostimulative effect and mechanisms of the 14 newly generated PD-1 mAbs. Multiple cellular and molecular biology experiments were performed in this study, such as CCK-8, ELISA, flow cytometry, immunofluorescence and Western blot. RESULTS: We found that mAb B1C4 significantly enhanced the tumor-killing cytokine secretion level by Jurkat cells in the co-culture system and increased the killing ability of Jurkat cells on HepG2 cells. Co-culture with HePG2 cells led to Jurkat cell cycle delay in S phase, and B1C4 promoted cell cycle progression from S to G2/M. Co-culture with HePG2 cells also caused apoptosis in Jurkat cells, which was inhibited by B1C4. B1C4 reversed the immunosuppression of Jurkat cells resulted from co-cultured with HePG2 cells through inhibiting PTEN and activating PI3K/AKT/mTOR signaling pathways. CONCLUSION: Our study demonstrated that anti-PD-1 mAb B1C4 could inhibit the apoptosis of Jurkat cells induced by HePG2 hepatoma cells and reverse the immunosuppressive effect of HePG2 cells on Jurkat cells. The study provides a vital basis for applying PD-1 monoclonal antibodies in the treatment of HCC and provides antibody selection for the development of novel PD-1 mAb with blocking activity.

5.
Front Cell Dev Biol ; 8: 606448, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33585446

RESUMO

Canonical Notch signaling is one of the most conserved signaling cascades. It regulates cell proliferation, cell differentiation, and cell fate maintenance in a variety of biological systems during development and cancer (Fortini, 2009; Kopan and Ilagan, 2009; Andersson et al., 2011; Ntziachristos et al., 2014). For the hematopoietic system, during embryonic development, Notch1 is essential for the emergence of hematopoietic stem cells (HSCs) at the aorta-gornado-mesonephro regions of the dorsal aorta. At adult stage, Notch receptors and Notch targets are expressed at different levels in diverse hematopoietic cell types and influence lineage choices. For example, Notch specifies T cell lineage over B cells. However, there has been a long-lasting debate on whether Notch signaling is required for the maintenance of adult HSCs, utilizing transgenic animals inactivating different components of the Notch signaling pathway in HSCs or niche cells. The aims of the current mini-review are to summarize the evidence that disapproves or supports such hypothesis and point at imperative questions waiting to be addressed; hence, some of the seemingly contradictory findings could be reconciled. We need to better delineate the Notch signaling events using biochemical assays to identify direct Notch targets within HSCs or niche cells in specific biological context. More importantly, we call for more elaborate studies that pertain to whether niche cell type (vascular endothelial cells or other stromal cell)-specific Notch ligands regulate the differentiation of T cells in solid tumors during the progression of T-lymphoblastic lymphoma (T-ALL) or chronic myelomonocytic leukemia (CMML). We believe that the investigation of vascular endothelial cells' or other stromal cell types' interaction with hematopoietic cells during homeostasis and stress can offer insights toward specific and effective Notch-related therapeutics.

6.
Int J Oncol ; 52(6): 2079-2092, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29620156

RESUMO

Hepatocellular carcinoma (HCC) is one of the most common malignancies and causes of death worldwide. Research investigating novel therapeutic strategies for the treatment of HCC is urgently required. Monoclonal antibodies (mAbs) that target the programmed cell death­1 (PD­1/PDCD1)/programmed death-ligand 1 (PD-L1) immune checkpoint have demonstrated substantial clinical benefit for a variety of solid tumors; however, these mAbs have not been well studied in HCC. In the present study, Sp2/0-Ag14 myeloma cells and spleen cells derived from BALB/c mice immunized with the recombinant human PD­1/PDCD1 protein were fused for the production of novel antibodies. The 9E11 mAb, which exhibited the highest specificity for PD­1 in HCC tissues in western blot and immunohistochemical staining analyses, was used to investigate the clinical significance of PD­1 expression in HCC tissues from 77 cases, which were collected and examined histologically. Overexpression of PD­1 was identified in peritumoral tissues, primarily in the liver portal region. Importantly, by analyzing the clinical data from 77 HCC patients, the expression of PD­1 was observed to be significantly correlated with larger tumor size (>5 cm) and poorly differentiated tumors. In addition, PD­1 expression was moderately correlated with venous thrombosis, but not correlated with patient sex or age, liver cirrhosis, hepatitis B, tumor, node and metastasis (TNM) stage or tumor location. The results of the present study suggest that high-level PD­1 expression may be an important factor associated with the immune checkpoint pathway in HCC. The results suggest that PD­1 serves an important role in tumor immune evasion and may be a valuable immunodiagnostic marker. In addition, PD­1 may serve as a therapeutic target for patients presenting with poorly differentiated HCC, thus indicating the potential application of a PD­1 inhibitor for the treatment of HCC patients.


Assuntos
Anticorpos Monoclonais/metabolismo , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/metabolismo , Trombose Venosa/metabolismo , Adulto , Idoso , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Imunização , Neoplasias Hepáticas/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Proteínas Recombinantes/metabolismo , Carga Tumoral , Regulação para Cima
7.
J Cell Biol ; 212(4): 389-97, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26858266

RESUMO

The efficacy of cardiac cell therapy depends on the integration of existing and newly formed cardiomyocytes. Here, we developed a minimal in vitro model of this interface by engineering two cell microtissues (µtissues) containing mouse cardiomyocytes, representing spared myocardium after injury, and cardiomyocytes generated from embryonic and induced pluripotent stem cells, to model newly formed cells. We demonstrated that weaker stem cell-derived myocytes coupled with stronger myocytes to support synchronous contraction, but this arrangement required focal adhesion-like structures near the cell-cell junction that degrade force transmission between cells. Moreover, we developed a computational model of µtissue mechanics to demonstrate that a reduction in isometric tension is sufficient to impair force transmission across the cell-cell boundary. Together, our in vitro and in silico results suggest that mechanotransductive mechanisms may contribute to the modest functional benefits observed in cell-therapy studies by regulating the amount of contractile force effectively transmitted at the junction between newly formed and spared myocytes.


Assuntos
Comunicação Celular , Contração Miocárdica , Miócitos Cardíacos/fisiologia , Células-Tronco/fisiologia , Engenharia Tecidual/métodos , Animais , Animais Recém-Nascidos , Cálcio/metabolismo , Diferenciação Celular , Células Cultivadas , Simulação por Computador , Adesões Focais/metabolismo , Mecanotransdução Celular , Camundongos , Camundongos Endogâmicos BALB C , Modelos Cardiovasculares , Miócitos Cardíacos/transplante , Fenótipo , Cultura Primária de Células , Transplante de Células-Tronco , Estresse Mecânico , Fatores de Tempo
8.
Anat Rec (Hoboken) ; 297(9): 1758-69, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25125187

RESUMO

Smooth muscle (SM) exhibits a highly organized structural hierarchy that extends over multiple spatial scales to perform a wide range of functions at the cellular, tissue, and organ levels. Early efforts primarily focused on understanding vascular SM (VSM) function through biochemical signaling. However, accumulating evidence suggests that mechanotransduction, the process through which cells convert mechanical stimuli into biochemical cues, is requisite for regulating contractility. Cytoskeletal proteins that comprise the extracellular, intercellular, and intracellular domains are mechanosensitive and can remodel their structure and function in response to external mechanical cues. Pathological stimuli such as malignant hypertension can act through the same mechanotransductive pathways to induce maladaptive remodeling, leading to changes in cellular shape and loss of contractile function. In both health and disease, the cytoskeletal architecture integrates the mechanical stimuli and mediates structural and functional remodeling in the VSM.


Assuntos
Citoesqueleto/metabolismo , Mecanotransdução Celular , Contração Muscular , Proteínas Musculares/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Vasoconstrição , Animais , Citoesqueleto/patologia , Humanos , Músculo Liso Vascular/patologia , Músculo Liso Vascular/fisiopatologia , Miócitos de Músculo Liso/patologia , Doenças Vasculares/metabolismo , Doenças Vasculares/patologia , Doenças Vasculares/fisiopatologia , Remodelação Vascular
9.
Nano Lett ; 11(9): 3643-8, 2011 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-21800912

RESUMO

Scaffolds that couple electrical and elastic properties may be valuable for cardiac cell function. However, existing conductive materials do not mimic physiological properties. We prepared and characterized a tunable, hybrid hydrogel scaffold based on Au nanoparticles homogeneously synthesized throughout a polymer templated gel. Conductive gels had Young's moduli more similar to myocardium relative to polyaniline and polypyrrole, by 1-4 orders of magnitude. Neonatal rat cardiomyocytes exhibited increased expression of connexin 43 on hybrid scaffolds relative to HEMA with or without electrical stimulation.


Assuntos
Conexina 43/biossíntese , Regulação da Expressão Gênica , Coração/fisiologia , Miocárdio/metabolismo , Miócitos Cardíacos/citologia , Nanotecnologia/métodos , Animais , Animais Recém-Nascidos , Anisotropia , Condutividade Elétrica , Ouro/química , Nanopartículas Metálicas/química , Metacrilatos/química , Polímeros/química , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA