Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Theranostics ; 10(19): 8633-8647, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32754268

RESUMO

Rationale: The prognosis of gastric cancer (GC) patients is poor, and there is limited therapeutic efficacy due to genetic heterogeneity and difficulty in early-stage screening. Here, we developed and validated an individualized gene set-based prognostic signature for gastric cancer (GPSGC) and further explored survival-related regulatory mechanisms as well as therapeutic targets in GC. Methods: By implementing machine learning, a prognostic model was established based on gastric cancer gene expression datasets from 1699 patients from five independent cohorts with reported full clinical annotations. Analysis of the tumor microenvironment, including stromal and immune subcomponents, cell types, panimmune gene sets, and immunomodulatory genes, was carried out in 834 GC patients from three independent cohorts to explore regulatory survival mechanisms and therapeutic targets related to the GPSGC. To prove the stability and reliability of the GPSGC model and therapeutic targets, multiplex fluorescent immunohistochemistry was conducted with tissue microarrays representing 186 GC patients. Based on multivariate Cox analysis, a nomogram that integrated the GPSGC and other clinical risk factors was constructed with two training cohorts and was verified by two validation cohorts. Results: Through machine learning, we obtained an optimal risk assessment model, the GPSGC, which showed higher accuracy in predicting survival than individual prognostic factors. The impact of the GPSGC score on poor survival of GC patients was probably correlated with the remodeling of stromal components in the tumor microenvironment. Specifically, TGFß and angiogenesis-related gene sets were significantly associated with the GPSGC risk score and poor outcome. Immunomodulatory gene analysis combined with experimental verification further revealed that TGFß1 and VEGFB may be developed as potential therapeutic targets of GC patients with poor prognosis according to the GPSGC. Furthermore, we developed a nomogram based on the GPSGC and other clinical variables to predict the 3-year and 5-year overall survival for GC patients, which showed improved prognostic accuracy than clinical characteristics only. Conclusion: As a tumor microenvironment-relevant gene set-based prognostic signature, the GPSGC model provides an effective approach to evaluate GC patient survival outcomes and may prolong overall survival by enabling the selection of individualized targeted therapy.


Assuntos
Biomarcadores Tumorais/genética , Perfilação da Expressão Gênica/métodos , Neoplasias Gástricas/mortalidade , Fator de Crescimento Transformador beta1/genética , Fator B de Crescimento do Endotélio Vascular/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Nomogramas , Medicina de Precisão , Prognóstico , Modelos de Riscos Proporcionais , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Análise de Sobrevida , Análise Serial de Tecidos , Fator de Crescimento Transformador beta1/metabolismo , Microambiente Tumoral , Fator B de Crescimento do Endotélio Vascular/metabolismo , Adulto Jovem
2.
J Nanobiotechnology ; 18(1): 57, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32245495

RESUMO

BACKGROUNDS: Intolerable toxicity and unsatisfactory therapeutic effects are still big problems retarding the use of chemotherapy against cancer. Nano-drug delivery system promised a lot in increasing the patients' compliance and therapeutic efficacy. As a unique nano-carrier, supermolecular aggregation nanovehicle has attracted increasing interests due to the following advantages: announcing drug loading efficacy, pronouncing in vivo performance and simplified production process. METHODS: In this study, the supermolecular aggregation nanovehicle of bortezomib (BTZ) was prepared to treat breast cancer. RESULTS: Although many supermolecular nanovehicles are inclined to disintegrate due to the weak intermolecular interactions among the components, the BTZ supermolecules are satisfying stable. To shed light on the reasons behind this, the forces driving the formation of the nanovehicles were detailed investigated. In other words, the interactions among BTZ and other two components were studied to characterize the nanovehicles and ensure its stability. CONCLUSIONS: Due to the promising tumor targeting ability of the BTZ nanovehicles, the supermolecule displayed promising tumor curing effects and negligible systemic toxicity.


Assuntos
Antineoplásicos/farmacologia , Bortezomib/química , Bortezomib/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Teste de Materiais , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas , Propriedades de Superfície
3.
Cell Commun Signal ; 17(1): 72, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31288844

RESUMO

BACKGROUND: Chronic gastritis has been demonstrated to be a key cause of gastric cancer (GC), and control of gastric inflammation is regarded as an effective treatment for the clinical prevention of gastric carcinogenesis. However, there remains an unmet need to identify the dominant regulators of gastric oncogenesis-associated inflammation in vivo. METHODS: The mouse model for the study of inflammation-associated GC was induced by Benzo[a]pyrene (BaP) intragastric administration in Bcl6b-/- and wildtype mice on a C57BL/6 background. 5-Aza-2'-deoxycytidine (5-Aza), the demethylation drug, was intraperitoneally injected to restore Bcl6b expression. Human GC tissue array was used to analyse patient survival based on BCL6B and CD3 protein expression. RESULTS: Bcl6b was gradually downregulated by its own promoter hypermethylation in parallel to an increasing inflammatory response during the progression of BaP-induced gastric carcinogenesis in mice. Moreover, knockout of Bcl6b dramatically worsened the severity of gastric cancer and aggravated the inflammatory response in the BaP-induced mice GC model. Re-activation of Bcl6b by 5-Aza impeded inflammatory amplification and BaP-induced GC development, prolonging survival time in wildtype mice, whereas no notable curative effect occurred in Bcl6b-/- mice with 5-Aza treatment. Finally, significant negative correlations were detected between the mRNA levels of BCL6B and inflammatory cytokines in human GC tissues; patients harbouring BCL6B-negetive and severe-inflammation GC tumours were found to exhibit the shortest survival time. CONCLUSIONS: Epigenetic inactivation of Bcl6b promotes gastric cancer through amplification of the gastric inflammatory response in vivo and offers a new approach for GC treatment and regenerative medicine.


Assuntos
Carcinogênese/genética , Técnicas de Inativação de Genes , Proteínas Repressoras/deficiência , Proteínas Repressoras/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Animais , Carcinogênese/efeitos dos fármacos , Decitabina/farmacologia , Progressão da Doença , Regulação para Baixo/efeitos dos fármacos , Epigênese Genética , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Gástricas/metabolismo , Análise de Sobrevida
4.
Am J Physiol Cell Physiol ; 316(6): C830-C843, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30576236

RESUMO

Long noncoding RNAs (lncRNAs) are commonly associated with various biological functions, in which the function of lncRNA maternally expressed gene 3 (MEG3) has been identified in various cancers. Strikingly, an association between MEG3 with microRNAs (miRNAs), mRNAs, and proteins has been reported. This study investigates the role of MEG3 in vascular endothelial cell (VEC) senescence. Expression of Girdin and miR-128 was monitored in the blood vessel samples of young and old mice/healthy volunteers, along with the measurement of human umbilical vein endothelial cells (HUVECs). The relationship between MEG3/Girdin and miR-128 was determined and verified. Loss- and gain-of-function approaches were applied to analyze the regulatory effects of MEG3 on platelet phagocytosis and lipoprotein oxidation of HUVEC membrane. In addition, the effect of MEG3 on HUVEC senescence was evaluated by detection of the reactive oxygen species, telomerase activity, and telomere length. To further analyze the MEG3-mediated regulatory mechanism, miR-128 upregulation and inhibition were introduced into the HUVECs. Downregulated Girdin and upregulated miR-128 were found in the blood vessels of old individuals and old mice, as well as in senescent HUVECs. MEG3 downregulation was found to be capable of inhibiting Girdin but enhancing miR-128 expression. It was also indicated to inhibit platelet phagocytosis and reduce telomerase activity and telomere length, while enhancing lipoprotein oxidation and reactive oxygen species production, which ultimately contributed in preventing and protecting HUEVCs from senescence. These findings provide evidence supporting that MEG3 leads to miR-128 downregulation and Girdin upregulation, which promotes platelet phagocytosis, thus protecting VECs from senescence.


Assuntos
Senescência Celular/fisiologia , Regulação para Baixo/fisiologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , MicroRNAs/metabolismo , Proteínas dos Microfilamentos/metabolismo , RNA Longo não Codificante/biossíntese , RNA Longo não Codificante/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Camundongos , MicroRNAs/antagonistas & inibidores
5.
J Exp Clin Cancer Res ; 37(1): 104, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29764469

RESUMO

BACKGROUND: Great progress has been achieved in the study of the aerobic glycolysis or the so-called Warburg effect in a variety of cancers; however, the regulation of the Warburg effect in Nasopharyngeal carcinoma (NPC) has not been completely defined. METHODS: Gene expression pattern of NPC cells were used to test associations between Chibby and ß-catenin expression. Chibby siRNAs and over-expression vector were transfected into NPC cells to down-regulate or up-regulate Chibby expression. Loss- and gain-of function assays were performed to investigate the role of Chibby in NPC cells. Western blot, cell proliferation, Glucose uptake, Lactate release, ATP level, and O2 consumption assays were used to determine the mechanism of Chibby regulation of underlying targets. Finally, immunohistochemistry assay of fresh NPC and nasopharyngeal normal tissue sample were used to detect the expression of Chibby, ß-Catenin, and PDK1 by immunostaining. RESULTS: We observed that Chibby, a ß-catenin-associated antagonist, is down-regulated in nasopharyngeal carcinoma cell lines and inhibits Wnt/ß-Catenin signaling induced Warburg effect. Mechanism study revealed that Chibby regulates aerobic glycolysis in NPC cells through pyruvate dehydrogenase kinase 1(PDK1), an important enzyme involved in glucose metabolism. Moreover, Chibby suppresses aerobic glycolysis of NPC via Wnt/ß-Catenin-Lin28/let7-PDK1 cascade. Chibby and PDK1 are critical for Wnt/ß-Catenin signaling induced NPC cell proliferation both in vitro and in vivo. Finally, immunostaining assay of tissue samples provides an important clinical relevance among Chibby, Wnt/ß-Catenin signaling and PDK1. CONCLUSIONS: Our study reveals an association between Chibby expression and cancer aerobic glycolysis, which highlights the importance of Wnt/ß-catenin pathway in regulation of energy metabolism of NPC. These results indicate that Chibby and PDK1 are the potential target for NPC treatment.


Assuntos
Proteínas de Transporte/metabolismo , MicroRNAs/genética , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Aerobiose , Animais , Linhagem Celular Tumoral , Proliferação de Células , Modelos Animais de Doenças , Feminino , Glicólise , Xenoenxertos , Humanos , Imuno-Histoquímica , Camundongos , Carcinoma Nasofaríngeo/patologia , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil , Proteínas de Ligação a RNA/genética , Transdução de Sinais , Proteínas Wnt/genética , beta Catenina/genética
6.
Mol Cancer ; 17(1): 84, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29690888

RESUMO

Conventional tumor markers for non-invasive diagnosis of gastric cancer (GC) exhibit insufficient sensitivity and specificity to facilitate detection of early gastric cancer (EGC). We aimed to identify EGC-specific exosomal lncRNA biomarkers that are highly sensitive and stable for the non-invasive diagnosis of EGC. Hence, in the present study, exosomes from the plasma of five healthy individuals and ten stage I GC patients and from culture media of four human primary stomach epithelial cells and four gastric cancer cells (GCCs) were isolated. Exosomal RNA profiling was performed using RNA sequencing to identify EGC-specific exosomal lncRNAs. A total of 79 and 285 exosomal RNAs were expressed at significantly higher levels in stage I GC patients and GCCs, respectively, than that in normal controls. Through combinational analysis of the RNA sequencing results, we found two EGC-specific exosomal lncRNAs, lncUEGC1 and lncUEGC2, which were further confirmed to be remarkably up-regulated in exosomes derived from EGC patients and GCCs. Furthermore, stability testing demonstrates that almost all the plasma lncUEGC1 was encapsulated within exosomes and thus protected from RNase degradation. The diagnostic accuracy of exosomal lncUEGC1 was evaluated, and lncUEGC1 exhibited AUC values of 0.8760 and 0.8406 in discriminating EGC patients from healthy individuals and those with premalignant chronic atrophic gastritis, respectively, which was higher than the diagnostic accuracy of carcinoembryonic antigen. Consequently, exosomal lncUEGC1 may be promising in the development of highly sensitive, stable, and non-invasive biomarkers for EGC diagnosis.


Assuntos
Biomarcadores Tumorais/sangue , Exossomos/genética , RNA Longo não Codificante/genética , Neoplasias Gástricas/patologia , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Detecção Precoce de Câncer , Feminino , Humanos , Masculino , Estadiamento de Neoplasias , RNA Longo não Codificante/sangue , Neoplasias Gástricas/sangue , Neoplasias Gástricas/genética
7.
Oncotarget ; 8(40): 66987-67000, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28978011

RESUMO

Marked up-regulation of aldose reductase (AR) is reportedly associated with the development of hepatocellular carcinoma (HCC). We investigated how aberrantly overexpressed AR might promote oncogenic transformation in liver cells and tissues. We found that overexpressed AR interacted with the kinase domain of AKT1 to increase AKT/mTOR signaling. In both cultured liver cancer cells and liver tissues in DEN-induced transgenic HCC model mice, we observed that AR overexpression-induced AKT/mTOR signaling tended to enhance lactate formation and hepatic inflammation to enhance hepatocarcinogenesis. Conversely, AR knockdown suppressed lactate formation and inflammation. Using cultured liver cancer cells, we also demonstrated that AKT1 was essential for AR-induced dysregulation of AKT/mTOR signaling, metabolic reprogramming, antioxidant defense, and inflammatory responses. These findings suggest that aberrantly overexpressed/over-activated hepatic AR promotes HCC development at least in part by interacting with oncogenic AKT1 to augment AKT/mTOR signaling. Inhibition of AR and/or AKT1 might serve as an effective strategy for the prevention and therapy of liver cancer.

8.
Hepatology ; 65(4): 1206-1221, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27809333

RESUMO

Great progress has been achieved in the study of Hippo signaling in regulating tumorigenesis; however, the downstream molecular events that mediate this process have not been completely defined. Moreover, regulation of Hippo signaling during tumorigenesis in hepatocellular carcinoma (HCC) remains largely unknown. In the present study, we systematically investigated the relationship between Yes-associated protein/TEA domain family member (YAP-TEAD) and hepatocyte nuclear factor 4-alpha (HNF4α) in the hepatocarcinogenesis of HCC cells. Our results indicated that HNF4α expression was negatively regulated by YAP1 in HCC cells by a ubiquitin proteasome pathway. By contrast, HNF4α was found to directly associate with TEAD4 to compete with YAP1 for binding to TEAD4, thus inhibiting the transcriptional activity of YAP-TEAD and expression of their target genes. Moreover, overexpression of HNF4α was found to significantly compromise YAP-TEAD-induced HCC cell proliferation and stem cell expansion. Finally, we documented the regulatory mechanism between YAP-TEAD and HNF4α in rat and mouse tumor models, which confirmed our in vitro results. CONCLUSION: There is a double-negative feedback mechanism that controls TEAD-YAP and HNF4α expression in vitro and in vivo, thereby regulating cellular proliferation and differentiation. Given that YAP acts as a dominant oncogene in HCC and plays a crucial role in stem cell homeostasis and tissue regeneration, manipulating the interaction between YAP, TEADs, and HNF4α may provide a new approach for HCC treatment and regenerative medicine. (Hepatology 2017;65:1206-1221).


Assuntos
Carcinoma Hepatocelular/genética , Fator 4 Nuclear de Hepatócito/genética , Neoplasias Hepáticas/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Biópsia por Agulha , Carcinogênese/genética , Carcinoma Hepatocelular/patologia , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células/genética , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Imuno-Histoquímica , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosfoproteínas/genética , Distribuição Aleatória , Ratos , Ratos Wistar , Sensibilidade e Especificidade , Transdução de Sinais , Fatores de Transcrição de Domínio TEA , Fatores de Transcrição/genética , Proteínas de Sinalização YAP
9.
Gastroenterology ; 150(3): 659-671.e16, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26619963

RESUMO

BACKGROUND & AIMS: Activation of WNT signaling promotes the invasive activities of several types of cancer cells, but it is not clear if it regulates the same processes in colorectal cancer (CRC) cells, or what mechanisms are involved. We studied the expression and function of OVOL2, a member of the Ovo family of conserved zinc-finger transcription factors regulated by the WNT signaling pathway, in intestinal tumors of mice and human beings. METHODS: We analyzed the expression of OVOL2 protein and messenger RNA in CRC cell lines and tissue arrays, as well as CRC samples from patients who underwent surgery at Xiamen University in China from 2009 to 2012; clinical information also was collected. CRC cell lines (SW620) were infected with lentivirus expressing OVOL2, analyzed in migration and invasion assays, and injected into nude mice to assess tumor growth and metastasis. Tandem affinity purification was used to purify the OVOL2-containing complex from CRC cells; the complex was analyzed by liquid chromatography, tandem mass spectrometry, and immunoprecipitation experiments. Gene promoter activities were measured in luciferase reporter assays. We analyzed mice with an intestine-specific disruption of Ovol2 (Ovol2(flox/+) transgenic mice), as well as Apc(min/+) mice; these mice were crossed and analyzed. RESULTS: Analysis of data from patients indicated that the levels of OVOL2 messenger RNA were significantly lower in colon carcinomas than adenomas, and decreased significantly as carcinomas progressed from grades 2 to 4. Immunohistochemical analysis of a tissue array of 275 CRC samples showed a negative association between tumor stage and OVOL2 level. Overexpression of OVOL2 in SW620 cells decreased their migration and invasion, reduced markers of the epithelial-to-mesenchymal transition, and suppressed their metastasis as xenograft tumors in nude mice; knockdown of OVOL2 caused LS174T cells to transition from epithelial to mesenchymal phenotypes. OVOL2 bound T-cell factor (TCF)4 and ß-catenin, facilitating recruitment of histone deacetylase 1 to the TCF4-ß-catenin complex; this inhibited expression of epithelial-to-mesenchymal transition-related genes regulated by WNT, such as SLUG, in CRC cell lines. OVOL2 was a downstream target of WNT signaling in LS174T and SW480 cells. The OVOL2 promoter was hypermethylated in late-stage CRC specimens from patients and in SW620 cells; hypermethylation resulted in OVOL2 down-regulation and an inability to inhibit WNT signaling. Disruption of Ovol2 in Apc(min/+) mice increased WNT activity in intestinal tissues and the formation of invasive intestinal tumors. CONCLUSIONS: OVOL2 is a colorectal tumor suppressor that blocks WNT signaling by facilitating the recruitment of histone deacetylase 1 to the TCF4-ß-catenin complex. Strategies to increase levels of OVOL2 might be developed to reduce colorectal tumor progression and metastasis.


Assuntos
Movimento Celular , Neoplasias Colorretais/metabolismo , Fatores de Transcrição/metabolismo , Via de Sinalização Wnt , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Células CACO-2 , Proliferação de Células , Neoplasias Colorretais/genética , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Neoplasias Colorretais/cirurgia , Regulação para Baixo , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Genótipo , Células HCT116 , Células HEK293 , Histona Desacetilase 1/metabolismo , Humanos , Estimativa de Kaplan-Meier , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Camundongos Transgênicos , Invasividade Neoplásica , Metástase Neoplásica , Fenótipo , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismo , Fatores de Tempo , Fator de Transcrição 4 , Fatores de Transcrição/genética , Transfecção , Carga Tumoral , beta Catenina/metabolismo
10.
J Cell Sci ; 126(Pt 24): 5692-703, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24101726

RESUMO

Wnt-ß-catenin signaling participates in the epithelial-mesenchymal transition (EMT) in a variety of cancers; however, its involvement in hepatocellular carcinoma (HCC) and downstream molecular events is largely undefined. HNF4α is the most prominent and specific factor maintaining the differentiation of hepatic lineage cells and a potential EMT regulator in HCC cells. However, the molecular mechanisms by which HNF4α maintains the differentiated liver epithelium and inhibits EMT have not been completely defined. In this study, we systematically explored the relationship between Wnt-ß-catenin signaling and HNF4α in the EMT process of HCC cells. Our results indicated that HNF4α expression was negatively regulated during Wnt-ß-catenin signaling-induced EMT through Snail and Slug in HCC cells. In contrast, HNF4α was found to directly associate with TCF4 to compete with ß-catenin but facilitate transcription co-repressor activities, thus inhibiting expression of EMT-related Wnt-ß-catenin targets. Moreover, HNF4α may control the switch between the transcriptional and adhesion functions of ß-catenin. Overexpression of HNF4α was found to completely compromise the Wnt-ß-catenin-signaling-induced EMT phenotype. Finally, we determined the regulation pattern between Wnt-ß-catenin signaling and HNF4α in rat tumor models. Our studies have identified a double-negative feedback mechanism controlling Wnt-ß-catenin signaling and HNF4α expression in vitro and in vivo, which sheds new light on the regulation of EMT in HCC. The modulation of these molecular processes may be a method of inhibiting HCC invasion by blocking Wnt-ß-catenin signaling or restoring HNF4α expression to prevent EMT.


Assuntos
Carcinoma Hepatocelular/metabolismo , Fator 4 Nuclear de Hepatócito/metabolismo , Neoplasias Hepáticas Experimentais/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular , Transição Epitelial-Mesenquimal , Retroalimentação Fisiológica , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Neoplasias Hepáticas Experimentais/patologia , Masculino , Ligação Proteica , Ratos , Ratos Wistar , Fatores de Transcrição da Família Snail , Fator de Transcrição 4 , Fatores de Transcrição/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo
11.
J Cell Sci ; 126(Pt 13): 2877-89, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23613467

RESUMO

Wnt signalling through ß-catenin and the lymphoid-enhancing factor 1/T-cell factor (LEF1/TCF) family of transcription factors maintains stem cell properties in both normal and malignant tissues; however, the underlying molecular pathway involved in this process has not been completely defined. Using a microRNA microarray screening assay, we identified let-7 miRNAs as downstream targets of the Wnt-ß-catenin pathway. Expression studies indicated that the Wnt-ß-catenin pathway suppresses mature let-7 miRNAs but not the primary transcripts, which suggests a post-transcriptional regulation of repression. Furthermore, we identified Lin28, a negative let-7 biogenesis regulator, as a novel direct downstream target of the Wnt-ß-catenin pathway. Loss of function of Lin28 impairs Wnt-ß-catenin-pathway-mediated let-7 inhibition and breast cancer stem cell expansion; enforced expression of let-7 blocks the Wnt-ß-catenin pathway-stimulated breast cancer stem cell phenotype. Finally, we demonstrated that the Wnt-ß-catenin pathway induces Lin28 upregulation and let-7 downregulation in both cancer samples and mouse tumour models. Moreover, the delivery of a modified lin28 siRNA or a let-7a agomir into the premalignant mammary tissues of MMTV-wnt-1 mice resulted in a complete rescue of the stem cell phenotype driven by the Wnt-ß-catenin pathway. These findings highlight a pivotal role for Lin28/let-7 in Wnt-ß-catenin-pathway-mediated cellular phenotypes. Thus, the Wnt-ß-catenin pathway, Lin28 and let-7 miRNAs, three of the most crucial stem cell regulators, connect in one signal cascade.


Assuntos
Regulação Neoplásica da Expressão Gênica , MicroRNAs/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais/genética , Proteína Wnt1/metabolismo , beta Catenina/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Genes Reporter , Humanos , Luciferases/genética , Luciferases/metabolismo , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/patologia , Camundongos , Camundongos Knockout , MicroRNAs/genética , Células-Tronco Neoplásicas/patologia , Proteínas de Ligação a RNA/genética , Ativação Transcricional , Proteína Wnt1/genética , beta Catenina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA