Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 667: 1-11, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38615618

RESUMO

A major challenge in combining cancer immunotherapy is the efficient delivery of multiple types of immunological stimulators to elicit a robust anti-tumor immune response and reprogram the immunosuppressive tumor microenvironment (TME). Here, we developed a DNA nanodevice that was generated by precisely assembling three types of immunological stimulators. The doxorubicin (Dox) component induced immunogenic cell death (ICD) in tumor cells and enhanced phagocytosis of antigen-presenting cells (APCs). Exogenous double-stranded DNA (dsDNA) could act as a molecular adjuvant to activate the stimulator of interferon genes (STING) signaling in APCs by engulfing dying tumor cells. Interleukin (IL)-12 and small hairpin programmed cell death-ligand 1 (shPD-L1) transcription templates were designed to regulate TME. Additionally, for targeted drug delivery, multiple cyclo[Arg-Gly-Asp-(d-Phe)-Cys] (cRGD) peptide units on DNA origami were employed. The incorporation of disulfide bonds allowed the release of multiple modules in response to intracellular glutathione (GSH) in tumors. The nanodevice promoted the infiltration of CD8+ and CD4+ cells into the tumor and generated a highly inflamed TME, thereby enhancing the effectiveness of cancer immunotherapy. Our research results indicate that the nanodevice we constructed can effectively inhibit tumor growth and prevent lung metastasis without obvious systemic toxicity, providing a promising strategy for cancer combination treatment.


Assuntos
DNA , Doxorrubicina , Imunoterapia , DNA/química , Doxorrubicina/farmacologia , Doxorrubicina/química , Doxorrubicina/administração & dosagem , Camundongos , Animais , Microambiente Tumoral/efeitos dos fármacos , Humanos , Sistemas de Liberação de Medicamentos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos BALB C , Linhagem Celular Tumoral , Células Apresentadoras de Antígenos/imunologia , Nanopartículas/química , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Antibióticos Antineoplásicos/farmacologia , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/administração & dosagem , Tamanho da Partícula
2.
J Proteomics ; 277: 104854, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36841354

RESUMO

Intrauterine adhesion (IUA) is one of the principal causes of secondary infertility in women of reproductive age, which seriously affects female reproductive function and quality of life. In recent years, the incidence of IUA has been increasing year by year, but its pathological mechanism has not yet been clarified. This study intended to reveal the pathogenesis of IUA and find new therapeutic targets by analyzing the proteomic differences between intrauterine adhesion tissues and normal human endometrial tissues. In the label-free quantitative proteomics, we identified 789 up-regulated differentially expressed proteins (DEPs) and 539 down-regulated DEPs. These DEPs were further analyzed by Gene Ontology (GO) annotation and enrichment analysis, Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis to preliminarily clarify the biomarkers involved in the pathogenesis of the IUA. The DEPs were further verified by parallel reaction monitoring (PRM) to confirm the results of proteomics. Finally, 7 target proteins may be candidates for treatment and elucidating the pathophysiology of IUA. SIGNIFICANCE: IUA is a fertility complication, which has increasing incidence recently. Until now, only a little research paid attention to the proteomic changes of IUA. This is the first study focused on the comparative analysis of endometrial tissue between IUA patients and normal women. We found 7 key proteins that may become the potential biomarkers of IUA.


Assuntos
Proteômica , Doenças Uterinas , Humanos , Feminino , Qualidade de Vida , Doenças Uterinas/metabolismo , Doenças Uterinas/patologia , Doenças Uterinas/terapia , Endométrio/metabolismo , Biomarcadores/metabolismo , Aderências Teciduais/genética , Aderências Teciduais/patologia , Aderências Teciduais/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA