Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 334
Filtrar
1.
JCI Insight ; 9(19)2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39377227

RESUMO

Bone contains multiple pools of skeletal stem/progenitor cells (SSPCs), and SSPCs in periosteal compartments are known to exhibit higher regenerative potential than those in BM and endosteal compartments. However, the in vivo identity and hierarchical relationships of periosteal SSPCs (P-SSPCs) remain unclear due to a lack of reliable markers to distinguish BM SSPCs and P-SSPCs. Here, we found that periosteal mesenchymal progenitor cells (P-MPs) in periosteum can be identified based on Postn-CreERT2 expression. Postn-expressing periosteal subpopulation produces osteolineage descendants that fuel bones to maintain homeostasis and support regeneration. Notably, Postn+ P-MPs are likely derived from Gli1+ skeletal stem cells (SSCs). Ablation of Postn+ cells results in impairments in homeostatic cortical bone architecture and defects in fracture repair. Genetic deletion of Igf1r in Postn+ cells dampens bone fracture healing. In summary, our study provides a mechanistic understanding of bone regeneration through the regulation of region-specific Postn+ P-MPs.


Assuntos
Regeneração Óssea , Moléculas de Adesão Celular , Células-Tronco Mesenquimais , Periósteo , Animais , Periósteo/citologia , Periósteo/metabolismo , Camundongos , Moléculas de Adesão Celular/metabolismo , Moléculas de Adesão Celular/genética , Células-Tronco Mesenquimais/metabolismo , Consolidação da Fratura , Masculino , Osteogênese/fisiologia , Osteogênese/genética , Feminino , Diferenciação Celular
2.
Adv Mater ; : e2407644, 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39400421

RESUMO

Clinical immune checkpoint blockade (ICB)-based immunotherapy of malignant tumors only elicits durable responses in a minority of patients, primarily due to the highly immunosuppressive tumor microenvironment. Although inducing immunogenic cell death (ICD) through reactive oxygen biocatalyst represents an attractive therapeutic strategy to amplify ICB, currently reported biocatalysts encounter insurmountable challenges in achieving high ROS-generating activity to induce potent ICD. Here, inspired by the natural catalytic characteristics of NADPH oxidases, the design of efficient, robust, and electron-rich Pt-based redox centers on the non-stoichiometric W18O49 substrates (Pt─WOx) to serve as bioinspired reactive oxygen biocatalysts to potently activate the ICD, which eventually enhance cancer immune responses and amplifies the ICB-based immunotherapy is reported. These studies demonstrate that the Pt─WOx exhibits rapid electron transfer capability and can promote the formation of electron-rich and low oxophilic Pt redox centers for superior reactive oxygen biocatalysis, which enables the Pt─WOx-based inducers to trigger endoplasmic reticulum stress directly and stimulate immune responses potently for amplifying the anti-PD-L1-based ICB therapy. This bioinspired design provides a straightforward strategy to engineer efficient, robust, and electron-rich reactive oxygen biocatalysts and also opens up a new avenue to create efficient ICD inducers for primary/metastatic tumor treatments.

3.
Ann Med Surg (Lond) ; 86(9): 5238-5251, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39238973

RESUMO

Background: High tibial osteotomy (HTO) is a well-established surgical procedure employed to treat medial compartment knee osteoarthritis by modifying the mechanical axis of the lower limb, thereby reducing the load on the affected joint. It has gained increased attention in recent years, resulting in numerous research advancements in this field. Methods: The top 100 most-cited papers on HTO, published between 1970 and 2023, were identified by searching the Web of Science Core Collection database. Data, including the title, author, keywords, journal, publication year, country, and institution, were extracted. Subsequently, a bibliometric analysis was performed. Results: The 100 papers collectively garnered a total of 15 833 citations, with a median of 122 and an average of 158.33 citations per article. Since the onset of the 21st century, there has been a significant increase in the number of publications and citations. Lobenhoffer authored the most published papers. The majority of papers originated from the USA. Hannover Medical School produced the most papers. Analysis of keywords in the articles revealed several research hotspots, including open-wedge osteotomy, biomechanical study, tibial slope, patellar height, Puddu plate, TomoFix plate, stability, complications, and accuracy. Conclusion: This study offers bibliometric insights into HTO, underscoring that the USA is a prominent leader in this field. HTO has garnered increasing attention since the onset of the 21st century and is expected to remain a significant research area in the future. Concurrently, the authors advise focusing on potential research hotspots, such as the navigation system, to augment the accuracy of the correction.

4.
Gut Microbes ; 16(1): 2387402, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39264803

RESUMO

Cholestatic liver injury results from the accumulation of toxic bile acids in the liver, presenting a therapeutic challenge with no effective treatment available to date. Andrographolide (AP) has exhibited potential as a treatment for cholestatic liver disease. However, its limited oral bioavailability poses a significant obstacle to harnessing its potent therapeutic properties and restricts its clinical utility. This limitation is potentially attributed to the involvement of gut microbiota in AP metabolism. In our study, employing pseudo-germ-free, germ-free and strain colonization animal models, along with 16S rRNA and shotgun metagenomic sequencing analysis, we elucidate the pivotal role played by gut microbiota in the C-sulfonate metabolism of AP, a process profoundly affecting its bioavailability and anti-cholestatic efficacy. Subsequent investigations pinpoint a specific enzyme, adenosine-5'-phosphosulfate (APS) reductase, predominantly produced by Desulfovibrio piger, which catalyzes the reduction of SO42- to HSO3-. HSO3- subsequently interacts with AP, targeting its C=C unsaturated double bond, resulting in the formation of the C-sulfonate metabolite, 14-deoxy-12(R)-sulfo andrographolide (APM). Inhibition of APS reductase leads to a notable enhancement in AP bioavailability and anti-cholestatic efficacy. Furthermore, employing RNA sequencing analysis and farnesoid X receptor (FXR) knockout mice, our findings suggest that AP may exert its anti-cholestatic effects by activating the FXR pathway to promote bile acid efflux. In summary, our study unveils the significant involvement of gut microbiota in the C-sulfonate metabolism of AP and highlights the potential benefits of inhibiting APS reductase to enhance its therapeutic effects. These discoveries provide valuable insights into enhancing the clinical applicability of AP as a promising treatment for cholestatic liver injury.


Assuntos
Disponibilidade Biológica , Diterpenos , Microbioma Gastrointestinal , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Diterpenos/metabolismo , Diterpenos/farmacologia , Camundongos , Colestase/metabolismo , Colestase/tratamento farmacológico , Colestase/microbiologia , Masculino , RNA Ribossômico 16S/genética , Ácidos e Sais Biliares/metabolismo , Bactérias/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Humanos , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Fígado/efeitos dos fármacos , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Modelos Animais de Doenças
5.
EMBO Rep ; 25(10): 4465-4487, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39256595

RESUMO

Wnt signaling is an important target for anabolic therapies in osteoporosis. A sclerostin-neutralizing antibody (Scl-Ab), that blocks the Wnt signaling inhibitor (sclerostin), has been shown to promote bone mass in animal models and clinical studies. However, the cellular mechanisms by which Wnt signaling promotes osteogenesis remain to be further investigated. O-GlcNAcylation, a dynamic post-translational modification of proteins, controls multiple critical biological processes including transcription, translation, and cell fate determination. Here, we report that Wnt3a either induces O-GlcNAcylation rapidly via the Ca2+-PKA-Gfat1 axis, or increases it in a Wnt-ß-catenin-dependent manner following prolonged stimulation. Importantly, we find O-GlcNAcylation indispensable for osteoblastogenesis both in vivo and in vitro. Genetic ablation of O-GlcNAcylation in the osteoblast-lineage diminishes bone formation and delays bone fracture healing in response to Wnt stimulation in vivo. Mechanistically, Wnt3a induces O-GlcNAcylation at Serine 174 of PDK1 to stabilize the protein, resulting in increased glycolysis and osteogenesis. These findings highlight O-GlcNAcylation as an important mechanism regulating Wnt-induced glucose metabolism and bone anabolism.


Assuntos
Glicólise , Osteoblastos , Osteogênese , Via de Sinalização Wnt , Proteína Wnt3A , Animais , Osteoblastos/metabolismo , Camundongos , Proteína Wnt3A/metabolismo , Humanos , Acilação , Processamento de Proteína Pós-Traducional , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , beta Catenina/metabolismo , Glicosilação
6.
Protein Cell ; 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39311688

RESUMO

Deactivation of the mitochondrial pyruvate dehydrogenase complex (PDC) is important for the metabolic switching of cancer cell from oxidative phosphorylation to aerobic glycolysis. Studies examining PDC activity regulation have mainly focused on the phosphorylation of pyruvate dehydrogenase (PDH, E1), leaving other post-translational modifications (PTMs) largely unexplored. Here, we demonstrate that the acetylation of Lys 488 of pyruvate dehydrogenase complex component X (PDHX) commonly occurs in hepatocellular carcinoma (HCC), disrupting PDC assembly and contributing to lactate-driven epigenetic control of gene expression. PDHX, an E3-binding protein (E3BP) in the PDC, is acetylated by the p300 at Lys 488, impeding the interaction between PDHX and dihydrolipoyl transacetylase (DLAT, E2), thereby disrupting PDC assembly to inhibit its activation. PDC disruption results in the conversion of most glucose to lactate, contributing to the aerobic glycolysis and H3K56 lactylation-mediated gene expression, facilitating tumor progression. These findings highlight a previously unrecognized role of PDHX acetylation in regulating PDC assembly and activity, linking PDHX Lys 488 acetylation and histone lactylation during HCC progression and providing a potential biomarker and therapeutic target for further development.

7.
J Hazard Mater ; 477: 135093, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39088948

RESUMO

Exposure to particulate matter (PM) can cause airway inflammation and worsen various airway diseases. However, the underlying molecular mechanism by which PM triggers airway inflammation has not been completely elucidated, and effective interventions are lacking. Our study revealed that PM exposure increased the expression of histone deacetylase 9 (HDAC9) in human bronchial epithelial cells and mouse airway epithelium through the METTL3/m6A methylation/IGF2BP3 pathway. Functional assays showed that HDAC9 upregulation promoted PM-induced airway inflammation and activation of MAPK signaling pathway in vitro and in vivo. Mechanistically, HDAC9 modulated the deacetylation of histone 4 acetylation at K12 (H4K12) in the promoter region of dual specificity phosphatase 9 (DUSP9) to repress the expression of DUSP9 and resulting in the activation of MAPK signaling pathway, thereby promoting PM-induced airway inflammation. Additionally, HDAC9 bound to MEF2A to weaken its anti-inflammatory effect on PM-induced airway inflammation. Then, we developed a novel inhaled lipid nanoparticle system for delivering HDAC9 siRNA to the airway, offering an effective treatment for PM-induced airway inflammation. Collectively, we elucidated the crucial regulatory mechanism of HDAC9 in PM-induced airway inflammation and introduced an inhaled therapeutic approach targeting HDAC9. These findings contribute to alleviating the burden of various airway diseases caused by PM exposure.


Assuntos
Epigênese Genética , Histona Desacetilases , Material Particulado , Regulação para Cima , Animais , Material Particulado/toxicidade , Humanos , Histona Desacetilases/metabolismo , Histona Desacetilases/genética , Epigênese Genética/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Camundongos , Fosfatases de Especificidade Dupla/genética , Fosfatases de Especificidade Dupla/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Inflamação , Nanopartículas/química , Nanopartículas/toxicidade , Camundongos Endogâmicos C57BL , Linhagem Celular , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Masculino
8.
Phytomedicine ; 134: 155965, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39214015

RESUMO

BACKGROUND: Allergic asthma has been regarded as an inflammatory disease mediated by type 2 immunity. The treatment of progressive forms of asthma remains unsatisfactory despite substantial progress in drug development. Lentinan (LTN), a specific polysaccharide derived from Lentinus edodes, exhibits anti-inflammatory and immunomodulatory functions. Nevertheless, the effect and underlying mechanisms of Lentinan on asthma remain unclear. PURPOSE: This research investigated the regulatory role of Lentinan on allergic airway inflammation and epithelial barrier dysfunction in HDM (house dust mite)-induced asthma. STUDY DESIGN: HDM-induced C57BL/6 mice received different dosages of Lentinan through intraperitoneal injections, to observe the effect of Lentinan against allergic airway inflammation and epithelial barrier dysfunction in asthma. METHODS: Mice were intranasally administered HDM extract solution on days 0, 1, 2 and on days 8 to 12, establishing the allergic asthma model. On days 8 to 12, mice were intraperitoneally administered varying doses of Lentinan (5/10/20mg/kg) 1h before HDM challenge. On day 14, samples were harvested for analysis. Cell counting, flow cytometry, ELISA, HE and PAS staining, IF staining, western blotting, RT-PCR, and bioinformatic analysis were conducted to delve into the underlying functions and mechanisms of Lentinan in asthma. RESULTS: Our study revealed that the treatment of Lentinan significantly ameliorated allergic airway inflammation and improved epithelial barrier dysfunction in experimental mice. Following Lentinan treatment, there was a significant reduction in eosinophil counts, accompanied by a diminished presence of type 2 cytokines. Reversal of epithelial barrier dysfunction after treatment was also observed. The therapeutic mechanism involved suppression of the PI3K/AKT/ NF-κB pathway. CONCLUSION: Our research illuminated the protective role of Lentinan in allergic airway inflammation and impaired epithelial barrier, suggesting LTN could be an innovative and promising candidate for asthma treatment.


Assuntos
Asma , Lentinano , Transdução de Sinais , Animais , Feminino , Masculino , Camundongos , Asma/tratamento farmacológico , Líquido da Lavagem Broncoalveolar , Citocinas/metabolismo , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Lentinano/farmacologia , Pulmão/efeitos dos fármacos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pyroglyphidae , Cogumelos Shiitake/química , Transdução de Sinais/efeitos dos fármacos
9.
EMBO J ; 43(20): 4492-4521, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39192032

RESUMO

Glioma cells hijack developmental programs to control cell state. Here, we uncover a glioma cell state-specific metabolic liability that can be therapeutically targeted. To model cell conditions at brain tumor inception, we generated genetically engineered murine gliomas, with deletion of p53 alone (p53) or with constitutively active Notch signaling (N1IC), a pathway critical in controlling astrocyte differentiation during brain development. N1IC tumors harbored quiescent astrocyte-like transformed cell populations while p53 tumors were predominantly comprised of proliferating progenitor-like cell states. Further, N1IC transformed cells exhibited increased mitochondrial lipid peroxidation, high ROS production and depletion of reduced glutathione. This altered mitochondrial phenotype rendered the astrocyte-like, quiescent populations more sensitive to pharmacologic or genetic inhibition of the lipid hydroperoxidase GPX4 and induction of ferroptosis. Treatment of patient-derived early-passage cell lines and glioma slice cultures generated from surgical samples with a GPX4 inhibitor induced selective depletion of quiescent astrocyte-like glioma cell populations with similar metabolic profiles. Collectively, these findings reveal a specific therapeutic vulnerability to ferroptosis linked to mitochondrial redox imbalance in a subpopulation of quiescent astrocyte-like glioma cells resistant to standard forms of treatment.


Assuntos
Ferroptose , Glioblastoma , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Animais , Camundongos , Glioblastoma/metabolismo , Glioblastoma/patologia , Glioblastoma/genética , Humanos , Mitocôndrias/metabolismo , Astrócitos/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Peroxidação de Lipídeos , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
10.
J Microbiol Biotechnol ; 34(9): 1769-1777, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39187454

RESUMO

Chemotherapy-induced nausea and vomiting (CINV) is a debilitating side effect related to activation of substance P (SP). SP activation can result from dysregulation of the gut-brain axis, and also from activation of protein kinase A signaling (PKA) signaling. In this study, we connected these factors in an attempt to unveil the mechanisms underlying CINV and develop new therapeutic strategies. Female rats were injected with cisplatin (Cis) to induce pica. Fecal samples were collected before/after injection, and subjected to lipid metabolomics analysis. In another portion of pica rats, the PKA inhibitor KT5720 was applied to investigate the involvement of PKA signaling in CINV, while fecal microbiota transplantation (FMT) was implemented to verify the therapeutic effect of the lipid metabolite 14(15)-EpETE. Pica symptoms were recorded, followed by ileal histological examination. The targeting relationship between 14(15)-EpETE and glucagon was determined by bioinformatics. SP and glucagon/PKA signaling in rat ileum, serum, and/or brain substantia nigra were detected by immunohistochemistry, enzyme-linked immunosorbent assay, and/or western blot. The results showed a significantly lower level of 14(15)-EpETE in rat feces after Cis injection. KT5720 treatment alleviated Cis-induced pica symptoms, ileal injury, SP content increase in the ileum, serum, and brain substantia nigra, and ileal PKA activation in rats. The ileal level of glucagon was elevated by Cis in rats. FMT exerted an effect similar to that of KT5720 treatment, relieving the Cis-induced changes, including ileal glucagon/PKA activation in rats. Our findings demonstrate that FMT restores 14(15)-EpETE production, which inhibits SP release by targeting GCG/PKA signaling, ultimately mitigating CINV.


Assuntos
Cisplatino , Proteínas Quinases Dependentes de AMP Cíclico , Microbioma Gastrointestinal , Náusea , Transdução de Sinais , Substância P , Vômito , Animais , Cisplatino/efeitos adversos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos , Substância P/metabolismo , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Vômito/induzido quimicamente , Vômito/metabolismo , Vômito/tratamento farmacológico , Náusea/induzido quimicamente , Náusea/metabolismo , Náusea/tratamento farmacológico , Fezes/química , Fezes/microbiologia , Transplante de Microbiota Fecal , Ratos Sprague-Dawley , Íleo/metabolismo , Antineoplásicos/efeitos adversos , Modelos Animais de Doenças
11.
Neurochem Res ; 49(11): 3105-3117, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39167346

RESUMO

Cerebral ischemia reperfusion injury is a severe neurological impairment that occurs after blood flow reconstruction in stroke, and microglia cell pyroptosis is one of its important mechanisms. Electroacupuncture has been shown to be effective in mitigating and alleviating cerebral ischemia reperfusion injury by inhibiting neuroinflammation, reducing cellular pyroptosis, and improving neurological function. In this experiment, we divided the rats into three groups, including the sham operation (Sham) group, the middle cerebral artery occlusion/reperfusion (MCAO/R) group, and the pre-electroacupuncture (EAC) group. Pre-electroacupuncture group was stimulated with electroacupuncture of a certain intensity on the Baihui (GV 20) and Dazhui (GV 14) of the rat once a day from the 7th day to the 1st day before the MCAO/R operation. The extent of cerebral infarction was detected by TTC staining. A modified Zea-Longa five-point scale scoring system was used to determine neurologic function in MCAO rats. The number of neurons and morphological changes were accessed by Nissl staining and HE staining. The cellular damage was detected by TUNEL staining. In addition, the expression levels of RhoA, pyrin, GSDMD, Caspase1, cleaved-Caspase1, Iba-1, CD206, and ROCK2 were examined by western blotting and immunofluorescence. The results found that pre-electroacupuncture significantly attenuated neurological impairment and cerebral infarction compared to the post-MCAO/R rats. In addition, pre-electroacupuncture therapy promoted polarization of microglia to the neuroprotective (M2) phenotype. In addition, pre-electroacupuncture inhibited microglia pyroptosis by inhibiting RhoA/pyrin/GSDMD signaling pathway, thereby reducing neuronal injury and increasing neuronal survival in the MCAO/R rats. Taken together, these results demonstrated that pre-acupuncture could attenuate cerebral ischemia-reperfusion injury by inhibiting microglial pyroptosis. Therefore, pre-electroacupuncture might be a potential preventive strategy for ischemic stroke patients.


Assuntos
Eletroacupuntura , Microglia , Traumatismo por Reperfusão , Transdução de Sinais , Animais , Masculino , Ratos , Isquemia Encefálica/metabolismo , Isquemia Encefálica/terapia , Eletroacupuntura/métodos , Gasderminas , Infarto da Artéria Cerebral Média/terapia , Infarto da Artéria Cerebral Média/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Microglia/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Piroptose/fisiologia , Ratos Sprague-Dawley , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/terapia , Traumatismo por Reperfusão/prevenção & controle , Proteínas rho de Ligação ao GTP , Proteína rhoA de Ligação ao GTP/metabolismo , Transdução de Sinais/fisiologia
13.
Cell Biochem Biophys ; 82(3): 2957-2975, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39014186

RESUMO

Podocyte damage plays a crucial role in the occurrence and development of diabetic nephropathy (DN). Accumulating evidence suggests that dysregulation of transcription factors plays a crucial role in podocyte damage in DN. However, the biological functions and underlying mechanisms of most transcription factors in hyperglycemia-induced podocytes damage remain largely unknown. Through integrated analysis of data mining, bioinformatics, and RT-qPCR validation, we identified a critical transcription factor forkhead box F1 (FOXF1) implicated in DN progression. Moreover, we discovered that FOXF1 was extensively down-regulated in renal tissue and serum from DN patients as well as in high glucose (HG)-induced podocyte damage. Meanwhile, our findings showed that FOXF1 might be a viable diagnostic marker for DN patients. Functional experiments demonstrated that overexpression of FOXF1 strikingly enhanced proliferation, outstandingly suppressed apoptosis, and dramatically reduced inflammation and fibrosis in HG-induced podocytes damage. Mechanistically, we found that the downregulation of FOXF1 in HG-induced podocyte damage was caused by DNMT1 directly binding to FOXF1 promoter and mediating DNA hypermethylation to block FOXF1 transcriptional activity. Furthermore, we found that FOXF1 inhibited the transcriptional expression of miR-342-3p by binding to the promoter of miR-342, resulting in reduced sponge adsorption of miR-342-3p to E2F1, promoting the expression of E2F1, and thereby inhibiting HG-induced podocytes damage. In conclusion, our findings showed that blocking the FOXF1/miR-342-3p/E2F1 axis greatly alleviated HG-induced podocyte damage, which provided a fresh perspective on the pathogenesis and therapeutic strategies for DN patients.


Assuntos
DNA (Citosina-5-)-Metiltransferase 1 , Nefropatias Diabéticas , Regulação para Baixo , Fator de Transcrição E2F1 , Fatores de Transcrição Forkhead , Glucose , MicroRNAs , Podócitos , Podócitos/metabolismo , Podócitos/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Humanos , Fator de Transcrição E2F1/metabolismo , Fator de Transcrição E2F1/genética , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/genética , Glucose/farmacologia , Glucose/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/genética , Animais , Apoptose/efeitos dos fármacos , Metilação de DNA , Regiões Promotoras Genéticas , Camundongos , Proliferação de Células
14.
Aging Cell ; 23(10): e14265, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38955799

RESUMO

Searching for biomarkers of senescence remains necessary and challenging. Reliable and detectable biomarkers can indicate the senescence condition of individuals, the need for intervention in a population, and the effectiveness of that intervention in controlling or delaying senescence progression and senescence-associated diseases. Therefore, it is of great importance to fulfill the unmet requisites of senescence biomarkers especially when faced with the growing global senescence nowadays. Here, we established that DNA G-quadruplex (G4) in mitochondrial genome was a reliable hallmark for mesenchymal senescence. Via developing a versatile and efficient mitochondrial G4 (mtG4) probe we revealed that in multiple types of senescence, including chronologically healthy senescence, progeria, and replicative senescence, mtG4 hallmarked aged mesenchymal stem cells. Furthermore, we revealed the underlying mechanisms by which accumulated mtG4, specifically within respiratory chain complex (RCC) I and IV loci, repressed mitochondrial genome transcription, finally impairing mitochondrial respiration and causing mitochondrial dysfunction. Our findings endowed researchers with the visible senescence biomarker based on mitochondrial genome and furthermore revealed the role of mtG4 in inhibiting RCC genes transcription to induce senescence-associated mitochondrial dysfunction. These findings depicted the crucial roles of mtG4 in predicting and controlling mesenchymal senescence.


Assuntos
Senescência Celular , Quadruplex G , Genoma Mitocondrial , Células-Tronco Mesenquimais , Humanos , Senescência Celular/genética , Genoma Mitocondrial/genética , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Mitocôndrias/metabolismo , Mitocôndrias/genética , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo
15.
Stem Cells ; 42(9): 821-829, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38864549

RESUMO

SIRT6 owns versatile types of enzymatic activities as a multitasking protein, including ribosyltransferase and deacetylase. To investigate the epigenetic regulations of SIRT6 on MSC fate determination via histone deacetylation, we used allosteric small molecules specifically controlling its histone 3 deacetylation activities. Results showed that enhanced deacetylation of SIRT6 promoted the ossific lineage commitment of MSC and finally achieved anabolic effects on hard tissues. Mechanistically, H3K9ac and H3K56ac, governed by SIRT6, in MSC orchestrated the transcriptions of crucial metabolic genes, mediating MSC fate determination. Most importantly, our data evidenced that modulating the epigenetic regulations of SIRT6, specifically via enhancing its deacetylation of H3K9ac and H3K56ac, was a promising choice to treat bone loss diseases and promote dentin regeneration. In this study, we revealed the specific roles of SIRT6's histone modification in MSC fate determination. These findings endow us with insights on SIRT6 and the promising therapeutic choices through SIRT6's epigenetic functions for hard tissues regeneration.


Assuntos
Epigênese Genética , Células-Tronco Mesenquimais , Sirtuínas , Sirtuínas/metabolismo , Sirtuínas/genética , Animais , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Diferenciação Celular/genética , Camundongos , Histonas/metabolismo , Humanos , Acetilação
16.
BMC Oral Health ; 24(1): 646, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824565

RESUMO

BACKGROUND: Immature teeth with necrotic pulps present multiple challenges to clinicians. In such cases, regenerative endodontic procedures (REPs) may be a favorable strategy. Cells, biomaterial scaffolds, and signaling molecules are three key elements of REPs. Autologous human dental pulp cells (hDPCs) play an important role in pulp regeneration. In addition, autologous platelet concentrates (APCs) have recently been demonstrated as effective biomaterial scaffolds in regenerative dentistry, whereas the latest generation of APCs-concentrated growth factor (CGF), especially liquid phase CGF (LPCGF)-has rarely been reported in REPs. CASE PRESENTATION: A 31-year-old woman presented to our clinic with the chief complaint of occlusion discomfort in the left mandibular posterior region for the past 5 years. Tooth #35 showed no pulp vitality and had a periodontal lesion, and radiographic examination revealed that the tooth exhibited extensive periapical radiolucency with an immature apex and thin dentin walls. REP was implemented via transplantation of autologous hDPCs with the aid of LPCGF. The periodontal lesion was managed with simultaneous periodontal surgery. After the treatment, the tooth was free of any clinical symptoms and showed positive results in thermal and electric pulp tests at 6- and 12-month follow-ups. At 12-month follow-up, radiographic evidence and three-dimensional models, which were reconstructed using Mimics software based on cone-beam computed tomography, synergistically confirmed bone augmentation and continued root development, indicating complete disappearance of the periapical radiolucency, slight lengthening of the root, evident thickening of the canal walls, and closure of the apex. CONCLUSION: hDPCs combined with LPCGF represents an innovative and effective strategy for cell-based regenerative endodontics.


Assuntos
Polpa Dentária , Endodontia Regenerativa , Humanos , Feminino , Adulto , Polpa Dentária/citologia , Endodontia Regenerativa/métodos , Necrose da Polpa Dentária/terapia , Transplante de Células/métodos , Transplante Autólogo
17.
Int Arch Allergy Immunol ; 185(9): 910-920, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38781935

RESUMO

INTRODUCTION: The occurrence and progression of lung adenocarcinoma (LUAD) impair T-cell immune responses, causing immune escape and subsequently affecting the efficacy of immunotherapy in patients. Aurora kinase A (AURKA) is upregulated in varying cancers, but its role in LUAD immune escape is elusive. This work attempted to explore molecular mechanisms of AURKA regulation in LUAD immune escape. METHODS: Through bioinformatics analysis, AURKA level in LUAD was evaluated, and potential upstream transcription factors of AURKA were predicted using hTFtarget. ETS variant transcription factor 4 (ETV4) expression in LUAD was analyzed through The Cancer Genome Atlas. Pearson's correlation analysis was then utilized to test the correlation between AURKA and ETV4. Interaction and binding between AURKA and ETV4 were validated through dual-luciferase assay and chromatin immunoprecipitation. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) tested relative mRNA expression of AURKA and ETV4 in LUAD cells, cell counting kit-8 assayed cell viability, and Western blot analysis was conducted to determine the protein level of programmed death-ligand 1 (PD-L1). Coculture of LUAD cells with activated CD8+ T cells was carried out, and an LDH assay was used to assess the cytotoxicity of CD8+ T cells against LUAD cells. Interferon-γ (IFN-γ), interleukin-2 (IL-2), and tumor necrosis factor-α (TNF-α) levels in the coculture system were assessed by enzyme-linked immunosorbent assay (ELISA). Western blot assessed protein levels of JAK2, p-JAK2, STAT3, and p-STAT3. RESULTS: Compared to normal tissues, AURKA and ETV4 were upregulated in tumor tissues, and AURKA presented a negative association with CD8+ T-cell immune infiltration but a positive association with PD-L1. qRT-PCR unveiled significantly upregulated mRNA of AURKA and ETV4 in LUAD cells compared to normal lung epithelial cells. Knockdown of AURKA significantly decreased cell viability and PD-L1 protein level in LUAD cells, enhanced cytotoxicity of CD8+ T cells against LUAD cells and IFN-γ, IL-2, and TNF-α expression, while overexpression of AURKA yielded opposite results. Furthermore, the knockdown of ETV4 could reverse the oncogenic characteristics of cells caused by AURKA overexpression. CONCLUSION: Our study illustrated that ETV4/AURKA axis promoted PD-L1 expression, suppressed CD8+ T-cell activity, and mediated immune escape in LUAD by regulating the JAK2/STAT3 signaling pathway.


Assuntos
Adenocarcinoma de Pulmão , Aurora Quinase A , Antígeno B7-H1 , Neoplasias Pulmonares , Proteínas Proto-Oncogênicas c-ets , Evasão Tumoral , Humanos , Adenocarcinoma de Pulmão/imunologia , Adenocarcinoma de Pulmão/genética , Proteínas E1A de Adenovirus/metabolismo , Proteínas E1A de Adenovirus/genética , Aurora Quinase A/metabolismo , Aurora Quinase A/genética , Aurora Quinase A/imunologia , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/imunologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogênicas c-ets/genética , Proteínas Proto-Oncogênicas c-ets/metabolismo , Proteínas Proto-Oncogênicas c-ets/imunologia , Evasão Tumoral/imunologia
18.
Int J Oral Sci ; 16(1): 33, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654018

RESUMO

Precise orchestration of cell fate determination underlies the success of scaffold-based skeletal regeneration. Despite extensive studies on mineralized parenchymal tissue rebuilding, regenerating and maintaining undifferentiated mesenchyme within calvarial bone remain very challenging with limited advances yet. Current knowledge has evidenced the indispensability of rebuilding suture mesenchymal stem cell niches to avoid severe brain or even systematic damage. But to date, the absence of promising therapeutic biomaterials/scaffolds remains. The reason lies in the shortage of fundamental knowledge and methodological evidence to understand the cellular fate regulations of scaffolds. To address these issues, in this study, we systematically investigated the cellular fate determinations and transcriptomic mechanisms by distinct types of commonly used calvarial scaffolds. Our data elucidated the natural processes without scaffold transplantation and demonstrated how different scaffolds altered in vivo cellular responses. A feasible scaffold, polylactic acid electrospinning membrane (PLA), was next identified to precisely control mesenchymal ingrowth and self-renewal to rebuild non-osteogenic suture-like tissue at the defect center, meanwhile supporting proper osteointegration with defect bony edges. Especially, transcriptome analysis and cellular mechanisms underlying the well-orchestrated cell fate determination of PLA were deciphered. This study for the first time cellularly decoded the fate regulations of scaffolds in suture-bony composite defect healing, offering clinicians potential choices for regenerating such complicated injuries.


Assuntos
Regeneração Óssea , Alicerces Teciduais , Transcriptoma , Animais , Regeneração Óssea/fisiologia , Poliésteres , Crânio/cirurgia , Células-Tronco Mesenquimais , Mesoderma/citologia , Diferenciação Celular , Engenharia Tecidual/métodos , Suturas Cranianas , Materiais Biocompatíveis
19.
Clin Proteomics ; 21(1): 29, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594611

RESUMO

BACKGROUND: Adamantinomatous craniopharyngiomas (ACPs) are rare benign epithelial tumours with high recurrence and poor prognosis. Biological differences between recurrent and primary ACPs that may be associated with disease recurrence and treatment have yet to be evaluated at the proteomic level. In this study, we aimed to determine the proteomic profiles of paired recurrent and primary ACP, gain biological insight into ACP recurrence, and identify potential targets for ACP treatment. METHOD: Patients with ACP (n = 15) or Rathke's cleft cyst (RCC; n = 7) who underwent surgery at Sanbo Brain Hospital, Capital Medical University, Beijing, China and received pathological confirmation of ACP or RCC were enrolled in this study. We conducted a proteomic analysis to investigate the characteristics of primary ACP, paired recurrent ACP, and RCC. Western blotting was used to validate our proteomic results and assess the expression of key tumour-associated proteins in recurrent and primary ACPs. Flow cytometry was performed to evaluate the exhaustion of tumour-infiltrating lymphocytes (TILs) in primary and recurrent ACP tissue samples. Immunohistochemical staining for CD3 and PD-L1 was conducted to determine differences in T-cell infiltration and the expression of immunosuppressive molecules between paired primary and recurrent ACP samples. RESULTS: The bioinformatics analysis showed that proteins differentially expressed between recurrent and primary ACPs were significantly associated with extracellular matrix organisation and interleukin signalling. Cathepsin K, which was upregulated in recurrent ACP compared with that in primary ACP, may play a role in ACP recurrence. High infiltration of T cells and exhaustion of TILs were revealed by the flow cytometry analysis of ACP. CONCLUSIONS: This study provides a preliminary description of the proteomic differences between primary ACP, recurrent ACP, and RCC. Our findings serve as a resource for craniopharyngioma researchers and may ultimately expand existing knowledge of recurrent ACP and benefit clinical practice.

20.
Transl Cancer Res ; 13(2): 864-878, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38482452

RESUMO

Background: The occurrence rate of primary ocular adnexal lymphoma (POAL) is relatively low, and estimation of prognosis of these patients poses significant challenges. This study aims to investigate the independent prognostic factors of POAL patients and establish a predictive model to provide clinical data for the formulation of standardized treatment plans. Methods: We conducted a retrospective analysis by extracting data of POAL patients diagnosed between 2000 and 2017 from the Surveillance, Epidemiology, and End Results (SEER) database. The enrolled patients were randomly divided into a training group and a testing group in a 7:3 ratio. To identify independent prognostic factors, we used both univariate and multivariate Cox regression analyses. Conditional survival (CS) pattern of these patients was analyzed. We formulated a nomogram model to forecast survival rates at intervals of 2, 5, 10, and 15 years. The reliability of the model's predictions was assessed through the concordance index (C-index) and the area under the receiver operating characteristic (ROC) curve (AUC). Moreover, we designed an online survival calculator using the nomogram model. Results: The study ultimately analyzed 3,324 patients with POAL, of which 2,327 and 997 were respectively assigned to a training group and a testing group. Important prognostic factors including age, sex, tumor site, tumor histology, coexistence of other malignancy, surgery, radiotherapy (RT), and marital status were identified. Based on these predictors, a novel nomogram model was successfully developed with excellent predictive performance, which can also be accessed on the website: https://helloshinyweb.shinyapps.io/eye_dynamic_nomogram/. The calibration curves demonstrated good consistency between the predicted and actual survival rates. Additionally, the C-index and AUC demonstrated good discriminative ability. Conclusions: This study has successfully developed and validated a prognostic nomogram model that accurately predicts the survival rate of patients with POAL. The model proves invaluable in enabling clinical doctors to assess patients' risk factors and formulate personalized treatment strategies, thereby enhancing survival assessment and clinical management for POAL patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA