Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Neurosurg ; 139(1): 238-247, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-36681967

RESUMO

OBJECTIVE: The authors investigated alterations in functional connectivity (FC) and EEG power during ictal onset patterns of low-voltage fast activity (LVFA) in drug-resistant focal epilepsy. They hypothesized that such changes would be useful to classify epilepsy surgical outcomes. METHODS: In a cohort of 79 patients with drug-resistant focal epilepsy who underwent stereoelectroencephalography (SEEG) evaluation as well as resective surgery, FC changes during the peri-LVFA period were measured using nonlinear regression (h2) and power spectral properties within/between three regions: the seizure onset zone (SOZ), early propagation zone (PZ), and noninvolved zone (NIZ). Desynchronization and power desynchronization h2 indices were calculated to assess the degree of EEG desynchronization during LVFA. Multivariate logistic regression was employed to control for confounding factors. Finally, receiver operating characteristic curves were generated to evaluate the performance of desynchronization indices in predicting surgical outcome. RESULTS: Fifty-three patients showed ictal LVFA and distinct zones of the SOZ, PZ, and NIZ. Among them, 39 patients (73.6%) achieved seizure freedom by the final follow-up. EEG desynchronization, measured by h2 analysis, was found in the seizure-free group during LVFA: FC decreased within the SOZ and between regions compared with the pre-LVFA and post-LVFA periods. In contrast, the non-seizure-free group showed no prominent EEG desynchronization. The h2 desynchronization index, but not the power desynchronization index, enabled classification of seizure-free versus non-seizure-free patients after resective surgery. CONCLUSIONS: EEG desynchronization during the peri-LVFA period, measured by within-zone and between-zone h2 analysis, may be helpful for identifying patients with favorable postsurgical outcomes and also may potentially improve epileptogenic zone identification in the future.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsias Parciais , Epilepsia , Humanos , Eletroencefalografia , Epilepsias Parciais/cirurgia , Epilepsia Resistente a Medicamentos/cirurgia , Resultado do Tratamento
3.
Acta Neurol Scand ; 146(6): 767-774, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36071677

RESUMO

Sleep disorder is common in epilepsy. With a recent rapid development in sleep medicine, it has been increasingly recognized that anti-seizure therapies, either anti-seizure medications (ASMs) or non-pharmaceutical approaches, can take direct or indirect influence on sleep in patients with epilepsy. Here, we systematically review the effect of anti-seizure treatments on sleep. ASMs targeting at different sites exerted various effects on both sleep structure and sleep quality. Non-pharmaceutical treatments including resective surgery, ketogenic diet, and transcranial magnetic stimulation appear to have a positive effect on sleep, while vagus nerve stimulation, deep brain stimulation, and brain-responsive neurostimulation are likely to interrupt sleep and exacerbate sleep-disordered breathing. The potential mechanisms underlying how non-pharmacological approaches affect sleep are also discussed. The limitation of most studies is that they were largely based on small cohorts by short-term observations. Further well-designed and large-scale investigations in this field are warranted. Understanding the effect of anti-seizure therapies on sleep can guide clinicians to optimize epilepsy treatment in the future.


Assuntos
Estimulação Encefálica Profunda , Dieta Cetogênica , Epilepsia , Estimulação do Nervo Vago , Humanos , Epilepsia/complicações , Epilepsia/tratamento farmacológico , Sono
4.
Front Neurol ; 13: 755022, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35237224

RESUMO

OBJECTIVES: Debates over the relationship between hippocampal malrotation (HIMAL) and epilepsy continue without consensus. This study explores the role of HIMAL in a cohort of epilepsy caused by focal cortical dysplasia (FCD). METHODS: In this study, 90 patients with epilepsy caused by FCD type I and type II and 48 healthy adults underwent a 3 Tesla MRI following a dedicated epilepsy protocol for the analysis of the prevalence and morphologic features of HIMAL. In addition, numerous clinical characteristics and hippocampal volumes were evaluated. RESULTS: The cohort included a total of 90 patients (32 were HIMAL, 58 were non-HIMAL). Among these patients, 32 (35.6%) had HIMAL (22 left, four right, and six bilateral), which did not differ from the 48 controls, where 16 (33.3%) had HIMAL (12 left, two right, and two bilateral). Neither the quantitative features of HIMAL (diameter ratio, dominant inferior temporal sulcus height ratio, medial distance ratio, dominant inferior temporal sulcus angle, and parahippocampal angle), nor the accompanying characteristics of HIMAL (vertical dominant inferior temporal sulcus, enlarged temporal horn, and a low position of ipsilateral fornix) showed differences between patients with FCD and controls. No statistical difference in the clinical characteristics between FCD patients with HIMAL and those without was found. Neither the side nor the existence of HIMAL was correlated with the lateralization and location of FCD. As to the hippocampal volume, there was no difference between FCD patients with HIMAL and those without. CONCLUSION: Hippocampal malrotation is a common morphologic variant in healthy controls as well as in patients with epilepsy caused by FCD type I and type II. Hippocampal malrotation could be less significant in epilepsy caused by FCD type I and type II.

5.
Cell Mol Neurobiol ; 41(7): 1431-1440, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32719966

RESUMO

Alzheimer's disease (AD) is the leading cause of dementia. The majority of AD cases are late-onset, multifactorial cases. Genome-wide association studies have identified more than 30 loci associated with sporadic AD (SAD), one of which is Bridging integrator 1 (BIN1). For the past few years, there has been a consensus that BIN1 is second only to APOE as the strongest genetic risk factor for SAD. Therefore, many researchers have put great effort into studying the mechanism by which BIN1 might be involved in the pathogenetic process of AD. To date, plenty of evidence has shown that BIN1 may participate in several pathways in AD, including tau and amyloid pathology. In addition, BIN1 has been indicated to take part in other relevant pathways such as inflammation, apoptosis, and calcium homeostasis. In this review, we systemically summarize the research progress on how BIN1 participates in the development of AD, with the expectation of providing promising perspectives for future research.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Doença de Alzheimer/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Predisposição Genética para Doença/genética , Humanos , Proteínas tau/metabolismo
6.
BMC Infect Dis ; 19(1): 748, 2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31455261

RESUMO

BACKGROUND: Sparganosis, a rare and severe parasitic infection caused by the larvae of Spirometra species or simply sparganum, generally involves subcutaneous tissue or muscle. But occasionally, sparganum can also invade the human brain, resulting in cerebral sparganosis. CASE PRESENTATION: A 33-year-old woman presented with a 10-day history of headache. Postcontrast magnetic resonance imaging (MRI) revealed an irregular lesion with enhancement and the tunnel-shaped focus extending to the contralateral hemiphere. Cerebrospinal fluid (CSF) analysis disclosed pleocytosis (166 cells/µL) and an elevated protein concentration (0.742 g/L). Enzyme-linked immunosorbent assay (ELISA) revealed positive sparganum-specific antibody in both blood and CSF. Finally, the diagnosis of cerebral sparganosis was comfirmed. She received praziquantel treatment and got a favorable outcome during six-month follow-up. CONCLUSIONS: Irregular enhancement and the tunnel sign that extends to the contralateral hemisphere on postconstrast MRI are unusual presentations of cerebral sparganosis. ELISA for sparganum-specific antibody can help confirm the diagnosis. Although surgery is the preferred treatment for cerebral sparganosis, praziquantel might also achieve satisfying outcomes.


Assuntos
Encefalopatias/diagnóstico por imagem , Esparganose/diagnóstico por imagem , Adulto , Animais , Anti-Helmínticos/uso terapêutico , Anticorpos Anti-Helmínticos/sangue , Encefalopatias/parasitologia , Líquido Cefalorraquidiano/parasitologia , Meios de Contraste , Ensaio de Imunoadsorção Enzimática , Feminino , Cefaleia/parasitologia , Humanos , Imageamento por Ressonância Magnética/métodos , Praziquantel/uso terapêutico , Esparganose/tratamento farmacológico , Spirometra/imunologia , Spirometra/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA