Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5767, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982045

RESUMO

Multiple myeloma (MM) is a hematologic malignancy characterized by uncontrolled proliferation of plasma cells in the bone marrow. MM patients with aggressive progression have poor survival, emphasizing the urgent need for identifying new therapeutic targets. Here, we show that the leukocyte immunoglobulin-like receptor B1 (LILRB1), a transmembrane receptor conducting negative immune response, is a top-ranked gene associated with poor prognosis in MM patients. LILRB1 deficiency inhibits MM progression in vivo by enhancing the ferroptosis of MM cells. Mechanistic studies reveal that LILRB1 forms a complex with the low-density lipoprotein receptor (LDLR) and LDLR adapter protein 1 (LDLRAP1) to facilitate LDL/cholesterol uptake. Loss of LILRB1 impairs cholesterol uptake but activates the de novo cholesterol synthesis pathway to maintain cellular cholesterol homeostasis, leading to the decrease of anti-ferroptotic metabolite squalene. Our study uncovers the function of LILRB1 in regulating cholesterol metabolism and protecting MM cells from ferroptosis, implicating LILRB1 as a promising therapeutic target for MM patients.


Assuntos
Colesterol , Ferroptose , Homeostase , Receptor B1 de Leucócitos Semelhante a Imunoglobulina , Mieloma Múltiplo , Receptores de LDL , Humanos , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Mieloma Múltiplo/genética , Receptor B1 de Leucócitos Semelhante a Imunoglobulina/metabolismo , Ferroptose/genética , Colesterol/metabolismo , Receptores de LDL/metabolismo , Receptores de LDL/genética , Animais , Linhagem Celular Tumoral , Camundongos , Antígenos CD
2.
Stem Cell Res ; 78: 103467, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38861774

RESUMO

Dilated cardiomyopathy (DCM) is one of the main causes of sudden cardiac death and heart failure and is the leading indication for cardiac transplantation worldwide. Mutations in dozens of cardiac genes have been connected to the development of DCM including the Troponin T2 gene (TNNT2). Here, we generated a human induced pluripotent stem cells (hiPSCs) from a DCM patient with a familial history that carries a missense mutation in TNNT2. The hiPSCs show typical morphology of pluripotent stem cells, expression of pluripotency markers, normal karyotype, and in vitro capacity to differentiate into all three germ layers.


Assuntos
Cardiomiopatia Dilatada , Células-Tronco Pluripotentes Induzidas , Troponina T , Humanos , Cardiomiopatia Dilatada/patologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Troponina T/metabolismo , Troponina T/genética , Diferenciação Celular , Linhagem Celular , Masculino , Cariótipo
3.
Zool Res ; 43(6): 1011-1022, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36266925

RESUMO

The evolutionary and functional features of RNA editing are well studied in mammals, cephalopods, and insects, but not in birds. Here, we integrated transcriptomic and whole-genomic analyses to exhaustively characterize the expansive repertoire of adenosine-to-inosine (A-to-I) RNA editing sites (RESs) in the chicken. In addition, we investigated the evolutionary status of the chicken editome as a potential mechanism of domestication. We detected the lowest editing level in the liver of chickens, compared to muscles in humans, and found higher editing activity and specificity in the brain than in non-neural tissues, consistent with the brain's functional complexity. To a certain extent, specific editing activity may account for the specific functions of tissues. Our results also revealed that sequences critical to RES secondary structures remained conserved within avian evolution. Furthermore, the RNA editome was shaped by purifying selection during chicken domestication and most RESs may have served as a selection pool for a few functional RESs involved in chicken domestication, including evolution of nervous and immune systems. Regulation of RNA editing in chickens by adenosine deaminase acting on RNA (ADAR) enzymes may be affected by non-ADAR factors whose expression levels changed widely after ADAR knockdown. Collectively, we provide comprehensive lists of candidate RESs and non-ADAR-editing regulators in the chicken, thus contributing to our current understanding of the functions and evolution of RNA editing in animals.


Assuntos
Adenosina Desaminase , Galinhas , Edição de RNA , Animais , Humanos , Adenosina/genética , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Galinhas/genética , Genômica , Inosina/genética , RNA/genética , Transcriptoma
4.
JCI Insight ; 7(19)2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36040812

RESUMO

The proteasome inhibitors (PIs) bortezomib and carfilzomib, which target proteasome 20S subunit beta 5 (PSMB5) in cells, are widely used in multiple myeloma (MM) treatment. In this study, we demonstrated the role of interferon-stimulated 20 kDa exonuclease-like 2 (ISG20L2) in MM PI resistance. Gain- and loss-of-function studies showed that ISG20L2 suppressed MM cell sensitivity to PIs in vitro and in vivo. Patients with ISG20L2lo MM had a better response to PIs and a longer overall survival than patients with ISG20L2hi MM. Biotinylated bortezomib pull-down assays showed that ISG20L2 competed with PSMB5 in binding to bortezomib. The surface plasmon resonance assay confirmed the direct binding of bortezomib to ISG20L2. In ISG20L2hi MM cells, ISG20L2 attenuated the binding of bortezomib to PSMB5, resulting in lower inhibition of proteasome activity and therefore less bortezomib-induced cell death. Overall, we identified a potentially novel mechanism by which ISG20L2 conferred bortezomib resistance on MM. The expression of ISG20L2 correlated with MM PI responses and patient treatment outcomes.


Assuntos
Mieloma Múltiplo , Inibidores de Proteassoma , Ácidos Borônicos/farmacologia , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Exonucleases , Humanos , Interferons , Mieloma Múltiplo/tratamento farmacológico , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Pirazinas
5.
J Hematol Oncol ; 15(1): 55, 2022 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-35526043

RESUMO

Lysophosphatidic acid (LPA) is a naturally occurring phospholipid that regulates cell proliferation, survival, and migration. However, its role on human multiple myeloma (MM) cells is largely unknown. In this study, we show that LPA, which is highly elevated in MM patients, plays an important role in protecting human MM cells against proteasome inhibitor (PI)-induced apoptosis. LPA bound to its receptor LPAR2 activated its downstream MEK1/2-ERK1/2 signaling pathway and enhanced oxidative phosphorylation (OXPHOS) in mitochondria in MM cells. Increased OXPHOS activity produced more NAD+ and ATP, reduced proteasome activity, and enhanced protein folding and refolding in endoplasmic reticulum (ER), leading to induction of MM resistance to PIs. Importantly, inhibiting LPAR2 activity or knocking out LPAR2 in MM cells significantly enhanced MM sensitivity to PI-induced apoptosis in vitro and in vivo. Interestingly, primary MM cells from LPA-high patients were more resistant to PI-induced apoptosis than MM cells from LPA-low patients. Thus, our study indicates that LPA-LPAR2-mediated signaling pathways play an important role in MM sensitivity to PIs and targeting LPA or LPAR2 may potentially be used to (re)sensitize patients to PI-based therapy.


Assuntos
Mieloma Múltiplo , Inibidores de Proteassoma , Apoptose , Humanos , Lisofosfolipídeos/metabolismo , Lisofosfolipídeos/farmacologia , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/metabolismo
6.
J Clin Invest ; 132(7)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35192544

RESUMO

CD8+ T cell longevity regulated by metabolic activity plays important roles in cancer immunotherapy. Although in vitro-polarized, transferred IL-9-secreting CD8+ Tc9 (cytotoxic T lymphocyte subset 9) cells exert greater persistence and antitumor efficacy than Tc1 cells, the underlying mechanism remains unclear. Here, we show that tumor-infiltrating Tc9 cells display significantly lower lipid peroxidation than Tc1 cells in several mouse models, which is strongly correlated with their persistence. Using RNA-sequence and functional validation, we found that Tc9 cells exhibited unique lipid metabolic programs. Tc9 cell-derived IL-9 activated STAT3, upregulated fatty acid oxidation and mitochondrial activity, and rendered Tc9 cells with reduced lipid peroxidation and resistance to tumor- or ROS-induced ferroptosis in the tumor microenvironment. IL-9 signaling deficiency, inhibiting STAT3, or fatty acid oxidation increased lipid peroxidation and ferroptosis of Tc9 cells, resulting in impaired longevity and antitumor ability. Similarly, human Tc9 cells also exhibited lower lipid peroxidation than Tc1 cells and tumor-infiltrating CD8+ T cells expressed lower IL9 and higher lipid peroxidation- and ferroptosis-related genes than circulating CD8+ T cells in patients with melanoma. This study indicates that lipid peroxidation regulates Tc9 cell longevity and antitumor effects via the IL-9/STAT3/fatty acid oxidation pathway and regulating T cell lipid peroxidation can be used to enhance T cell-based immunotherapy in human cancer.


Assuntos
Linfócitos T CD8-Positivos , Interleucina-9 , Animais , Linfócitos T CD8-Positivos/metabolismo , Ácidos Graxos/metabolismo , Humanos , Imunoterapia/métodos , Interleucina-9/genética , Peroxidação de Lipídeos , Camundongos , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
7.
J Clin Invest ; 132(4)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35166240

RESUMO

The chromosomal t(4;14) (p16;q32) translocation drives high expression of histone methyltransferase nuclear SET domain-containing 2 (NSD2) and plays vital roles in multiple myeloma (MM) evolution and progression. However, the mechanisms of NSD2-driven epigenomic alterations in chemoresistance to proteasome inhibitors (PIs) are not fully understood. Using a CRISPR/Cas9 sgRNA library in a bone marrow-bearing MM model, we found that hepatoma-derived growth factor 2 (HRP2) was a suppressor of chemoresistance to PIs and that its downregulation correlated with a poor response and worse outcomes in the clinic. We observed suppression of HRP2 in bortezomib-resistant MM cells, and knockdown of HRP2 induced a marked tolerance to PIs. Moreover, knockdown of HRP2 augmented H3K27me3 levels, consequentially intensifying transcriptome alterations promoting cell survival and restriction of ER stress. Mechanistically, HRP2 recognized H3K36me2 and recruited the histone demethylase MYC-induced nuclear antigen (MINA) to remove H3K27me3. Tazemetostat, a highly selective epigenetic inhibitor that reduces H3K27me3 levels, synergistically sensitized the anti-MM effects of bortezomib both in vitro and in vivo. Collectively, these results provide a better understanding of the origin of chemoresistance in patients with MM with the t(4;14) translocation and a rationale for managing patients with MM who have different genomic backgrounds.


Assuntos
Reprogramação Celular , Cromossomos Humanos Par 14/genética , Cromossomos Humanos Par 4/genética , Dioxigenases , Epigênese Genética/efeitos dos fármacos , Histona Desmetilases , Mieloma Múltiplo , Proteínas de Neoplasias , Proteínas Nucleares , Inibidores de Proteassoma/farmacologia , Translocação Genética , Linhagem Celular Tumoral , Reprogramação Celular/efeitos dos fármacos , Reprogramação Celular/genética , Dioxigenases/genética , Dioxigenases/metabolismo , Epigenômica , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
8.
Methods Mol Biol ; 2549: 299-305, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34611814

RESUMO

In the past decades, human induced pluripotent stem cells (iPSCs) have been generated by the ectopic expression of "Yamanaka factors" in multiple somatic cells. However, the procedure to get access to donor cells is hard or invasive in most cases. Hereon, we depict a stepwise method developed in our laboratory for the generation of iPSCs from renal epithelial cells present in urine, which is noninvasive, nonintegrating, and universal. The resulting urinary iPSCs (UiPSCs) exhibit pluripotent characteristics resemble embryonic stem cells (ESCs) and thus urine may be a favorable source for generating iPSCs.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Embrionárias/metabolismo , Células Epiteliais , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo
9.
Blood ; 139(1): 59-72, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34411225

RESUMO

Proteasome inhibitors (PIs) such as bortezomib (Btz) and carfilzomib (Cfz) are highly efficacious for patients with multiple myeloma (MM). However, relapses are frequent, and acquired resistance to PI treatment emerges in most patients. Here, we performed a high-throughput screen of 1855 Food and Drug Administration (FDA)-approved drugs and identified all-trans retinoic acid (ATRA), which alone has no antimyeloma effect, as a potent drug that enhanced MM sensitivity to Cfz-induced cytotoxicity and resensitized Cfz-resistant MM cells to Cfz in vitro. ATRA activated retinoic acid receptor (RAR)γ and interferon-ß response pathway, leading to upregulated expression of IRF1. IRF1 in turn initiated the transcription of OAS1, which synthesized 2-5A upon binding to double-stranded RNA (dsRNA) induced by Cfz and resulted in cellular RNA degradation by RNase L and cell death. Similar to ATRA, BMS961, a selective RARγ agonist, could also (re)sensitize MM cells to Cfz in vitro, and both ATRA and BMS961 significantly enhanced the therapeutic effects of Cfz in established MM in vivo. In support of these findings, analyses of large datasets of patients' gene profiling showed a strong and positive correlation between RARγ and OAS1 expression and patient's response to PI treatment. Thus, this study highlights the potential for RARγ agonists to sensitize and overcome MM resistance to Cfz treatment in patients.


Assuntos
Antineoplásicos/farmacologia , Imunidade Inata/efeitos dos fármacos , Mieloma Múltiplo/tratamento farmacológico , Oligopeptídeos/farmacologia , Receptores do Ácido Retinoico/agonistas , 2',5'-Oligoadenilato Sintetase/imunologia , Linhagem Celular Tumoral , Endorribonucleases/imunologia , Humanos , Receptores do Ácido Retinoico/imunologia , Células Tumorais Cultivadas , Receptor gama de Ácido Retinoico
10.
Blood Adv ; 5(23): 5269-5282, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34592762

RESUMO

Multiple myeloma, a plasma cell malignancy in the bone marrow, remains largely incurable with currently available therapeutics. In this study, we discovered that the activated leukocyte cell adhesion molecule (ALCAM) interacted with epidermal growth factor receptor (EGFR), and regulated myelomagenesis. ALCAM was a negative regulator of myeloma clonogenicity. ALCAM expression was positively correlated with patients' survival. ALCAM-knockdown myeloma cells displayed enhanced colony formation in the presence of bone marrow stromal cells (BMSCs). BMSCs supported myeloma colony formation by secreted epidermal growth factor (EGF), which bound with its receptor (EGFR) on myeloma cells and activated Mek/Erk cell signaling, PI3K/Akt cell signaling, and hedgehog pathway. ALCAM could also bind with EGFR, block EGF from binding to EGFR, and abolish EGFR-initiated cell signaling. Hence, our study identifies ALCAM as a novel negative regulator of myeloma pathogenesis.


Assuntos
Molécula de Adesão de Leucócito Ativado , Proteínas Hedgehog , Antígenos CD , Moléculas de Adesão Celular Neuronais , Receptores ErbB/genética , Proteínas Fetais , Humanos , Fosfatidilinositol 3-Quinases , Transdução de Sinais
11.
Cell Metab ; 33(5): 1001-1012.e5, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33691090

RESUMO

Understanding the mechanisms underlying how T cells become dysfunctional in a tumor microenvironment (TME) will greatly benefit cancer immunotherapy. We found that increased CD36 expression in tumor-infiltrating CD8+ T cells, which was induced by TME cholesterol, was associated with tumor progression and poor survival in human and murine cancers. Genetic ablation of Cd36 in effector CD8+ T cells exhibited increased cytotoxic cytokine production and enhanced tumor eradication. CD36 mediated uptake of fatty acids by tumor-infiltrating CD8+ T cells in TME, induced lipid peroxidation and ferroptosis, and led to reduced cytotoxic cytokine production and impaired antitumor ability. Blocking CD36 or inhibiting ferroptosis in CD8+ T cells effectively restored their antitumor activity and, more importantly, possessed greater antitumor efficacy in combination with anti-PD-1 antibodies. This study reveals a new mechanism of CD36 regulating the function of CD8+ effector T cells and therapeutic potential of targeting CD36 or inhibiting ferroptosis to restore T cell function.


Assuntos
Antígenos CD36/metabolismo , Linfócitos T CD8-Positivos/imunologia , Ferroptose , Animais , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Antígenos CD36/antagonistas & inibidores , Antígenos CD36/genética , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Citocinas/metabolismo , Ácidos Graxos/metabolismo , Ferroptose/efeitos dos fármacos , Humanos , Imunoterapia , Peroxidação de Lipídeos , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/terapia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/mortalidade , Mieloma Múltiplo/terapia , Espécies Reativas de Oxigênio/metabolismo , Taxa de Sobrevida , Microambiente Tumoral
12.
Nat Commun ; 11(1): 5902, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33214555

RESUMO

CAR-T cell therapy is effective for hematologic malignancies. However, considerable numbers of patients relapse after the treatment, partially due to poor expansion and limited persistence of CAR-T cells in vivo. Here, we demonstrate that human CAR-T cells polarized and expanded under a Th9-culture condition (T9 CAR-T) have an enhanced antitumor activity against established tumors. Compared to IL2-polarized (T1) cells, T9 CAR-T cells secrete IL9 but little IFN-γ, express central memory phenotype and lower levels of exhaustion markers, and display robust proliferative capacity. Consequently, T9 CAR-T cells mediate a greater antitumor activity than T1 CAR-T cells against established hematologic and solid tumors in vivo. After transfer, T9 CAR-T cells migrate effectively to tumors, differentiate to IFN-γ and granzyme-B secreting effector memory T cells but remain as long-lived and hyperproliferative T cells. Our findings are important for the improvement of CAR-T cell-based immunotherapy for human cancers.


Assuntos
Citotoxicidade Imunológica , Imunoterapia Adotiva/métodos , Interleucina-9/metabolismo , Linfócitos T/imunologia , Animais , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Citocinas/metabolismo , Humanos , Memória Imunológica , Interferon gama/metabolismo , Camundongos , Fenótipo , Leucemia-Linfoma Linfoblástico de Células Precursoras/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/citologia , Linfócitos T/metabolismo , Linfócitos T/transplante , Células Th1/citologia , Células Th1/imunologia , Células Th1/metabolismo , Células Th1/transplante , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Stem Cell Res Ther ; 10(1): 167, 2019 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-31196181

RESUMO

BACKGROUND: Ischemic heart diseases are still a threat to human health. Human pluripotent stem cell-based transplantation exhibits great promise in cardiovascular disease therapy, including heart ischemia. The purpose of this study was to compare the efficacy of human embryonic stem cell-derived cardiomyocyte (ESC-CM) therapy in two heart ischemia models, namely, permanent ischemia (PI) and myocardial ischemia reperfusion (IR). METHODS: Human embryonic stem cell-derived cardiomyocytes were differentiated from engineered human embryonic stem cells (ESC-Rep) carrying green fluorescent protein (GFP), herpes simplex virus-1 thymidine kinase (HSVtk), and firefly luciferase (Fluc). Two different heart ischemia models were generated by the ligation of the left anterior descending artery (LAD), and ESC-Rep-derived cardiomyocytes (ESC-Rep-CMs) were transplanted into the mouse hearts. Cardiac function was analyzed to evaluate the outcomes of ESC-Rep-CM transplantation. Bioluminescence signal analysis was performed to assess the cell engraftment. Finally, the inflammation response was analyzed by real-time PCR and ELISA. RESULTS: Cardiac function was significantly improved in the PI group with ESC-Rep-CM injection compared to the PBS-injected control, as indicated by increased left ventricular ejection fraction (LVEF) and left ventricular fractional shortening (LVFS), as well as reduced fibrotic area. However, minimal improvement by ESC-Rep-CM injection was detected in the IR mouse model. We observed similar engraftment efficiency between PI and IR groups after ESC-Rep-CM injection. However, the restricted inflammation was observed after the injection of ESC-Rep-CMs in the PI group, but not in the IR group. Transplantation of ESC-Rep-CMs can partially preserve the heart function via regulating the inflammation response in the PI model, while little improvement of cardiac function in the IR model may be due to the less dynamic inflammation response by the mild heart damage. CONCLUSIONS: Our findings identified the anti-inflammatory effect of ESC-CMs as a possible therapeutic mechanism to improve cardiac function in the ischemic heart.


Assuntos
Células-Tronco Embrionárias Humanas/transplante , Isquemia/terapia , Miócitos Cardíacos/transplante , Traumatismo por Reperfusão/terapia , Animais , Diferenciação Celular/genética , Modelos Animais de Doenças , Proteínas de Fluorescência Verde/genética , Humanos , Isquemia/genética , Isquemia/patologia , Luciferases/genética , Camundongos , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/patologia , Volume Sistólico/genética , Timidina Quinase/genética , Função Ventricular Esquerda/genética
14.
Int J Nanomedicine ; 13: 5909-5924, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30319256

RESUMO

BACKGROUND: Nanoparticulate titanium dioxide (nano-TiO2) enters the body through various routes and causes organ damage. Exposure to nano-TiO2 is reported to cause testicular injury in mice or rats and decrease testosterone synthesis, sperm number, and motility. Importantly, nano-TiO2 suppresses testosterone production by Leydig cells (LCs) and impairs the reproductive capacity of animals. METHODS: In an attempt to establish the molecular mechanisms underlying the inhibitory effect of nano-TiO2 on testosterone synthesis, primary cultured rat LCs were exposed to varying concentrations of nano-TiO2 (0, 10, 20, and 40 µg/mL) for 24 hours, and alterations in cell viability, cell injury, testosterone production, testosterone-related factors (StAR, 3ßHSD, P450scc, SR-BI, and DAX1), and signaling molecules (ERK1/2, PKA, and PKC) were investigated. RESULTS: The data show that nano-TiO2 crosses the membrane into the cytoplasm or nucleus, triggering cellular vacuolization and nuclear condensation. LC viability decreased in a time-dependent manner at the same nano-TiO2 concentration, nano-TiO2 treatment (10, 20, and 40 µg/mL) decreased MMP (36.13%, 45.26%, and 79.63%), testosterone levels (11.40% and 44.93%), StAR (14.7%, 44.11%, and 72.05%), 3ßHSD (26.56%, 50%, and 79.69%), pERK1/2 (27.83%, 63.61%, and 78.89%), PKA (47.26%, 70.54%, and 85.61%), PKC (30%, 50%, and 71%), SR-BI (16.41%, 41.79%, and 67.16%), and P450scc (39.41%, 55.26%, and 86.84%), and upregulated DAX1 (1.31-, 1.63-, and 3.18-fold) in primary cultured rat LCs. CONCLUSION: Our collective findings indicated that nano-TiO2-mediated suppression of testosterone in LCs was associated with regulation of ERK1/2-PKA-PKC signaling pathways.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Células Intersticiais do Testículo/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Nanopartículas/química , Proteína Quinase C/metabolismo , Testosterona/biossíntese , Titânio/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Endocitose/efeitos dos fármacos , Hidrodinâmica , Células Intersticiais do Testículo/efeitos dos fármacos , Células Intersticiais do Testículo/ultraestrutura , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Modelos Biológicos , Nanopartículas/ultraestrutura , Ratos , Testosterona/metabolismo , Difração de Raios X
15.
Sci Bull (Beijing) ; 62(12): 820-830, 2017 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-36659315

RESUMO

RNA editing was first discovered in mitochondrial RNA molecular. However, whether adenosine-to-inosine (A-to-I) RNA editing has functions in nuclear genes involved in mitochondria remains elusive. Here, we retrieved 707,246 A-to-I RNA editing sites in Macaca mulatta leveraging massive transcriptomes of 30 different tissues and genomes of nine tissues, together with the reported data, and found that A-to-I RNA editing occurred frequently in nuclear genes that have functions in mitochondria. The mitochondrial structure, the level of ATP production, and the expression of some key genes involved in mitochondrial function were dysregulated after knocking down the expression of ADAR1 and ADAR2, the key genes encoding the enzyme responsible for RNA editing. When investigating dynamic changes of RNA editing during brain development, an amino-acid-changing RNA editing site (I234/V) in MFN1, a mediator of mitochondrial fusion, was identified to be significantly correlated with age, and could influence the function of MFN1. When studying transcriptomes of brain disorder, we found that dysregulated RNA editing sites in autism were also enriched within genes having mitochondrial functions. These data indicated that RNA editing had a significant function in mitochondria via their influence on nuclear genes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA