RESUMO
Rapid passivation and aggregation of nanoscale zero-valent iron (nZVI) seriously limit its performance in the remediation of different contaminants from wastewater. To overcome such issues, in the present study, nano-palladium/iron (nPd/Fe) was simultaneously improved by biochar (BC) prepared from discarded peanut shells and green complexing agent sodium citrate (SC). For this purpose, a composite (SC-nPd/Fe@BC) was successfully synthesized to remove 2,4-dichlorophenol (2,4-DCP) from wastewater. In the SC-nPd/Fe@BC, BC acts as a carrier with dispersed nPd/Fe particles to effectively prevent its agglomeration, and increased the specific surface area of the composite, thereby improving the reactivity and stability of nPd/Fe. Characterization results demonstrated that the SC-nPd/Fe@BC composites were well dispersed, and the agglomeration was weakened. The formation of the passivation layer on the surface of the particles was inhibited, and the mechanism of SC and BC improving the reactivity of nPd/Fe was clarified. Different factors were found to influence the reductive dichlorination of 2,4-DCP, including Pd loading, Fe:C, SC addition, temperature, initial pH, and initial pollutant concentration. The dechlorination results revealed that the synergistic effect of the BC and SC made the removal efficiency and dechlorination rate of 2,4-DCP by SC-nPd/Fe@BC reached to 96.0 and 95.6%, respectively, which was better than that of nPd/Fe (removal: 46.2%, dechlorination: 45.3%). Kinetic studies explained that the dechlorination reaction of 2,4-DCP and the data were better represented by the pseudo-first-order kinetic model. The reaction rate constants followed the order of SC-nPd/Fe@BC (0.0264 min-1) > nPd/Fe@BC (0.0089 min-1) > SC-nPd/Fe (0.0081 min-1) > nPd/Fe (0.0043 min-1). Thus, SC-nPd/Fe@BC was capable of efficiently reducing 2,4-DCP and the dechlorination efficiency of BC and SC synergistically assisted composite on 2,4-DCP was much better than that of SC-nPd/Fe, nPd/Fe@BC and nPd/Fe. Findings suggested that SC-nPd/Fe@BC can be promising for efficient treatment of chlorinated pollutants.
Assuntos
Carvão Vegetal , Clorofenóis , Ferro , Paládio , Clorofenóis/química , Paládio/química , Ferro/química , Carvão Vegetal/química , Poluentes Químicos da Água/química , Ácido Cítrico/química , Águas Residuárias/químicaRESUMO
BACKGROUND: Microcalcifications are suggested to be an indicator of thyroid malignancy, especially for papillary thyroid carcinoma (PTC), nonetheless, the association between macrocalcification and PTC is underexplored. Furthermore, screening methods like ultrasonography and ultrasound-guided fine needle aspiration biopsy (US-FNAB) are limited in evaluating macro-calcified thyroid nodules. Thus, we aimed to investigate the relationship between macrocalcification and PTC. We also explored the diagnostic efficiency of US-FNAB and proto-Oncogene Proteins B-raf V600E (BRAF V600E) mutation in macro-calcified thyroid nodules evaluation. METHODS: A retrospective research of 2645 thyroid nodules from 2078 participants was performed and divided into three groups as non-, micro-, and macro-calcified for further PTC incidence comparison. Besides, a total of 100 macro-calcified thyroid nodules with both results of US-FNAB and BRAF V600E mutation were screened out for subsequent evaluation of diagnostic efficiency. RESULTS: Compared to non-calcification, macrocalcification showed a significantly higher incidence of PTC (31.5% vs. 23.2%, P<0.05). Additionally, when compared with a single US-FNAB, the combination of US-FNAB and BRAF V600E mutation showed better diagnostic efficiency in diagnosing macro-calcified thyroid nodule (area under the curve (AUC) 0.94 vs. 0.84, P=0.03), with a significantly higher sensitivity (100.0% vs. 67.2%, P<0.01) and a comparable standard of specificity (88.9% vs. 100.0%, P=0.13). CONCLUSIONS: Occurrence of macrocalcification in thyroid nodules may suggest a high risk of PTC, and the combination of US-FNAB and BRAF V600E showed a greater value in identifying macro-calcified thyroid nodules, especially with significantly higher sensitivity. TRIAL REGISTRATION: The Ethics Committee of The First Affiliated Hospital of Wenzhou Medical University (2018-026).
Assuntos
Carcinoma Papilar , Neoplasias da Glândula Tireoide , Nódulo da Glândula Tireoide , Humanos , Câncer Papilífero da Tireoide/diagnóstico , Câncer Papilífero da Tireoide/genética , Nódulo da Glândula Tireoide/diagnóstico por imagem , Nódulo da Glândula Tireoide/genética , Estudos Retrospectivos , Proteínas Proto-Oncogênicas B-raf/genética , Carcinoma Papilar/diagnóstico , Carcinoma Papilar/genética , Carcinoma Papilar/patologia , Neoplasias da Glândula Tireoide/diagnóstico , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Mutação , Análise Mutacional de DNARESUMO
At present, it is a trend to use dietary supplements to prevent age-related cognitive impairment. This study aimed to investigate the effects of a dietary supplement enriched with micronutrients, phosphatidylserine, and docosahexaenoic acid on cognitive performance using a D-galactose (D-gal) induced aging rat model. Seven-month-old male Sprague-Dawley rats were randomly divided into five groups, including the control group, D-gal model group, and low-dose (2 g/kg body weight), medium-dose (6 g/kg body weight), and high-dose (10 g/kg body weight) dietary supplement intervention groups, which were investigated for 13 weeks. The dietary supplement intervention was found to improve cognitive performance in Morris water maze test, increase superoxidase dismutase activity, reduce malondialdehyde activity, decrease tumor necrosis factor-α and interleukin-6 concentrations, inhibit the activation of astrocytes, and elevate brain-derived neurotrophic factor protein and mRNA expression in the brains of D-gal-induced aged rats. This dietary supplement customized for the aged can be applied to the restoration of cognitive performance by enhancing antioxidant and anti-neuroinflammatory abilities, up-regulating neurotrophic factors, and inhibiting the activation of astrocytes. These results will be useful for future studies focused on implementation in humans.
RESUMO
In this study, nano zero-valent iron (nZVI) was loaded on biochar (BC) prepared from recycled waste peanut shells. The loaded BC in the nZVI@BC composite was assumed to weaken the agglomeration of nZVI and the environmentally-friendly complexing agents sodium citrate (Cit) and sodium carboxymethyl cellulose (CMC) were used to establish Cit-nZVI@BC and CMC-nZVI@BC for the effective removal of Cr(VI) from aqueous environments. The characterisation results suggested that Cit and CMC not only inhibited the oxidation of nZVI, but also effectively improved its reactivity. The experimental results demonstrated that the Cr(VI) removal efficiency by nZVI was less than 20%, while CMC-nZVI@BC enhanced the Cr(VI) removal efficiency to 80.73%, because CMC was coated on the nZVI surface for anti-passivation and improved the surface activity of nanoparticles. In addition, the Cr(VI) removal efficiency reached almost 100% with Cit-nZVI@BC, and the citrate dissociated the passivation layer on the surface of the zero-valent iron particles to ensure the reactivity of the zero-valent iron. The reaction mechanism of Cit-nZVI@BC includes adsorption, reduction, and co-precipitation, whereas CMC-nZVI@BC also involves surface complexation reactions. The kinetic studies revealed that the removal of Cr(VI) by Cit-nZVI@BC and CMC-nZVI@BC followed the second-order reaction kinetic model, and the reaction rates of Cit-nZVI@BC and CMC-nZVI@BC were both higher than that of nZVI. The results indicate that the prepared systems are promising for Cr(VI) remediation in contaminated environments.
Assuntos
Ferro , Poluentes Químicos da Água , Adsorção , Carvão Vegetal , Cromo , Cinética , Poluentes Químicos da Água/análiseRESUMO
Sodium citrate (SC) is a widely-used food and industrial additive with the properties of complexation and microbial degradation. In the present study, nano-zero-valent iron reaction system (SC-nZVI@BC) was successfully established by modifying nanoscale zero-valent iron (nZVI) with SC and biochar (BC), and was employed to remove Cr(â ¥) from aqueous solutions. The nZVI, SC-nZVI and SC-nZVI@BC were characterized and compared using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analyses (TGA), vibrating sample magnetometer (VSM), scanning electron microscope (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results showed that nZVI was successfully loaded on the biochar, and both the agglomeration and surface passivation problems of nanoparticles were well resolved. The dosage of SC, C:Fe, initial pH and Cr(â ¥) concentration demonstrated direct effects on the removal efficiency. The maximum Cr(â ¥) removal rate and the removal capacity within 60 min were 99.7% and 199.46 mg/g, respectively (C:Fe was 1:1, SC dosage was 1.12 mol.%, temperature was 25°C, pH = 7, and the original concentration of Cr(â ¥) was 20 mg/L). The reaction confirmed to follow the pseudo-second-order reaction kinetics, and the order of the reaction rate constant k was as follows: SC-nZVI@BC > nZVI@BC > SC-nZVI > nZVI. In addition, the mechanism of Cr(â ¥) removal by SC-nZVI@BC mainly involved adsorption, reduction and co-precipitation, and the reduction of Cr(â ¥) to Cr(â ¢) by nano Fe0 played a vital role. Findings from the present study demonstrated that the SC-nZVI@BC exhibited excellent removal efficiency toward Cr(â ¥) with an improved synergistic characteristic by SC and BC.
Assuntos
Ferro , Poluentes Químicos da Água , Adsorção , Carvão Vegetal , Cromo , Citrato de Sódio , Poluentes Químicos da Água/análiseRESUMO
A series of novel phthalimide-alkylamine derivatives were synthesized and evaluated as multi-functions inhibitors for the treatment of Alzheimer's disease (AD). The results showed that compound TM-9 could be regarded as a balanced multi-targets active molecule. It exhibited potent and balanced inhibitory activities against ChE and MAO-B (huAChE, huBuChE, and huMAO-B with IC50 values of 1.2µM, 3.8µM and 2.6⯵M, respectively) with low selectivity. Both kinetic analysis of AChE inhibition and molecular modeling study suggested that TM-9 binds simultaneously to the catalytic active site and peripheral anionic site of AChE. Interestingly, compound TM-9 abided by Lipinski's rule of five. Furthermore, our investigation proved that TM-9 indicated weak cytotoxicity, and it could cross the blood-brain barrier (BBB) in vitro. The results suggest that compound TM-9, an interesting multi-targeted active molecule, offers an attractive starting point for further lead optimization in the drug-discovery process against Alzheimer's disease.
Assuntos
Aminas/química , Inibidores da Colinesterase/síntese química , Desenho de Fármacos , Inibidores da Monoaminoxidase/síntese química , Ftalimidas/química , Doença de Alzheimer/tratamento farmacológico , Aminas/farmacologia , Aminas/uso terapêutico , Sítios de Ligação , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Colinesterases/química , Colinesterases/metabolismo , Humanos , Concentração Inibidora 50 , Cinética , Simulação de Acoplamento Molecular , Monoaminoxidase/química , Monoaminoxidase/metabolismo , Inibidores da Monoaminoxidase/farmacologia , Inibidores da Monoaminoxidase/uso terapêutico , Ftalimidas/síntese química , Ftalimidas/farmacologia , Ftalimidas/uso terapêutico , Estrutura Terciária de Proteína , Relação Estrutura-AtividadeRESUMO
A series of 2-acetyl-5-O-(amino-alkyl)phenol derivatives was designed, synthesized and evaluated as multi-function inhibitors for the treatment of Alzheimer's disease (AD). The results revealed that compound TM-3 indicated selective AChE inhibitory potency (eeAChE, IC50â¯=â¯0.69⯵M, selective index (SI)â¯=â¯32.7). Both kinetic analysis of AChE inhibition and molecular modeling study suggested that TM-3 could simultaneously bind to the catalytic active site and peripheral anionic site of AChE. And TM-3 was also a highly selective MAO-B inhibitor (IC50â¯=â¯6.8⯵M). Moreover, TM-3 could act as antioxidant (ORAC value was 1.5eq) and neuroprotectant, as well as a selective metal chelating agent. More interestingly, compound TM-3 could cross the blood-brain barrier (BBB) in vitro and abided by Lipinski's rule of five. Therefore, compound TM-3, a promising multi-targeted active molecule, offers an attractive starting point for further lead optimization in the drug-discovery process against AD.