Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(9)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38730872

RESUMO

Steel slag is a by-product of the steel industry and usually contains a high amount of f-CaO and f-MgO, which will result in serious soundness problems once used as a binding material and/or aggregates. To relieve this negative effect, carbonation treatment was believed to be one of the available and reliable methods. By carbonation treatment of steel slag, the phases of f-CaO and f-MgO can be effectively transformed into CaCO3 and MgCO3, respectively. This will not only reduce the expansive risk of steel slag to improve the utilization of steel slag further but also capture and store CO2 due to the mineralization process to reduce carbon emissions. In this study, based on the physical and chemical properties of steel slag, the carbonation mechanism, factors affecting the carbonation process, and the application of carbonated steel slag were reviewed. Eventually, the research challenge was also discussed.

2.
Rev Sci Instrum ; 93(8): 085002, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36050096

RESUMO

In this paper, a highly sensitive optical fiber gas pressure sensor is proposed and experimentally verified. The sensor is composed of two Fabry-Pérot (F-P) cavities, and two F-P cavities are fabricated by a single-mode fiber and two quartz capillaries with different inner diameters splicing. Among them, the small inner diameter capillary is used as a gas channel connecting the large inner diameter capillary and the external environment. The manufacturing process of the sensor only involves capillary cleaver and splicing and does not involve other complex manufacturing technologies. By correctly adjusting the length of the two quartz capillaries, when the free spectral range of the two F-P cavities is very close, the optical Vernier effect will be observed and used as a sensitive probe for detecting gas pressure. The experimental results show that, in the pressure range of 0-0.8 MPa, the gas pressure sensitivity of the sensor reaches -81.73 nm/MPa with a linearity of 99.7%, and the temperature cross-sensitivity is only 1.82 kPa/°C. Due to its easy manufacture, high sensitivity, compact structure, and small volume, the sensor has become one of the preferred structures for large-scale use in the field of gas sensing.

3.
ACS Nano ; 16(7): 10968-10978, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35797450

RESUMO

Real-time monitoring of health threatening gases for chemical safety and human health protection requires detection and discrimination of trace gases with proper gas sensors. In many applications, costly, bulky, and power-hungry devices, normally employing optical gas sensors and electrochemical gas sensors, are used for this purpose. Using a single miniature low-power semiconductor gas sensor to achieve this goal is hardly possible, mostly due to its selectivity issue. Herein, we report a dual-mode microheater integrated nanotube array gas sensor (MINA sensor). The MINA sensor can detect hydrogen, acetone, toluene, and formaldehyde with the lowest measured limits of detection (LODs) as 40 parts-per-trillion (ppt) and the theoretical LODs of ∼7 ppt, under the continuous heating (CH) mode, owing to the nanotubular architecture with large sensing area and excellent surface catalytic activity. Intriguingly, unlike the conventional electronic noses that use arrays of gas sensors for gas discrimination, we discovered that when driven by the pulse heating (PH) mode, a single MINA sensor possesses discrimination capability of multiple gases through a transient feature extraction method. These above features of our MINA sensors make them highly attractive for distributed low-power sensor networks and battery-powered mobile sensing systems for chemical/environmental safety and healthcare applications.


Assuntos
Gases , Nanotubos de Carbono , Humanos , Limite de Detecção , Nariz Eletrônico , Calefação
4.
ACS Nano ; 15(4): 7659-7667, 2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33871965

RESUMO

The accelerated evolution of communication platforms including Internet of Things (IoT) and the fifth generation (5G) wireless communication network makes it possible to build intelligent gas sensor networks for real-time monitoring chemical safety and personal health. However, this application scenario requires a challenging combination of characteristics of gas sensors including small formfactor, low cost, ultralow power consumption, superior sensitivity, and high intelligence. Herein, self-powered integrated nanostructured-gas-sensor (SINGOR) systems and a wirelessly connected SINGOR network are demonstrated here. The room-temperature operated SINGOR system can be self-driven by indoor light with a Si solar cell, and it features ultrahigh sensitivity to H2, formaldehyde, toluene, and acetone with the record low limits of detection (LOD) of 10, 2, 1, and 1 ppb, respectively. Each SINGOR consisting of an array of nanostructured sensors has the capability of gas pattern recognition and classification. Furthermore, multiple SINGOR systems are wirelessly connected as a sensor network, which has successfully demonstrated flammable gas leakage detection and alarm function. They can also achieve gas leakage localization with satisfactory precision when deployed in one single room. These successes promote the development of using nanostructured-gas-sensor network for wide range applications including smart home/building and future smart city.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA