Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Huan Jing Ke Xue ; 43(9): 4791-4799, 2022 Sep 08.
Artigo em Chinês | MEDLINE | ID: mdl-36096619

RESUMO

In order to study the distribution characteristics and potential risk of antimony (Sb) in urban soil, the concentrations of soil Sb in four different land use types were analyzed based on the data of 1670 soil samples with different vertical profiles in 102 plots in Shanghai. The risks were evaluated using the potential ecological risk index method and health risk assessment model. The results showed that the average ω(Sb) in the study area was 0.52 mg·kg-1, and the content of soil Sb gradually declined with the rise in soil profile depth. Sb was enriched in surface soil, which indicated that human activities had caused disturbance to the distribution of Sb in the soil. The content of Sb in the surface soil of industrial land was higher than that of residential land and commercial land, and the content of Sb in agricultural land was the lowest. The single-factor pollution index of industrial land was the highest, reaching a slight pollution level, whereas the residential land, commercial land, and agricultural land were at even-clean or clean levels, respectively. The whole region showed slight ecological risk, with the potential ecological risk index ranging from 4.23 to 7.61. The potential ecological risk level of industrial land was moderate, which needs to be addressed. The results of health risk assessment showed that the non-carcinogenic risk of Sb in the soil was low; however, it is of great concern to residents, especially children, when on residential land.


Assuntos
Metais Pesados , Poluentes do Solo , Antimônio , Criança , China , Monitoramento Ambiental/métodos , Humanos , Metais Pesados/análise , Medição de Risco , Solo , Poluentes do Solo/análise
2.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 26(4): 1162-1166, 2018 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-30111424

RESUMO

OBJECTIVE: To detect the expression level of cyclooxygenase-1(COX-1) and cyclooxygenase-2(COX-2) in the platelet of iron deficiency anemia(IDA)women at childbearing age and to explore its correlation with the different indexes of anemia and platelets. METHODS: Forty female IDA patients at childbearing age and 35 healthy controls were enrolled in this study. The Flow cytometry was used to detect the expression of platelet COX-1 and COX-2,the platelet aggregation function as examined by turbidimetric method,and the levels of serum ferritin were analyzed by electrochemical luminescence method,the leval of serum iron was determined by ELISA,and the correlation of different indexes was analyzed. RESULTS: Compared with healthy controls,the levels of platelet COX-1 and COX-2 were significantly lower in female IDA patients at Childbearing age(P<0.05),but platelet count(Plt),mean platelet volume(MPV) and platelet aggregation rate(PAgT)were not statistically different between the 2 groups(P > 0.05). The expression level of platelet COX-1 positively correlated with those of Hb(r =0.623,P<0.01),serum iron(r =0.321,P<0.05) and HCT(r=0.305,P<0.05). but the platelet COX-2 expression did not corelate with these indexs. CONCLUSION: The expression of platelet COX-1 and COX-2 in female IDA patients at Childbearing age markedly decrease,and the expression level of platelet COX-1 closely relates with the severity of anemia,that possesses reference value for clinical diagnosis of female IDA patients at Childbearing age..


Assuntos
Anemia Ferropriva , Plaquetas , Ciclo-Oxigenase 1 , Ciclo-Oxigenase 2 , Feminino , Ferritinas , Humanos , Agregação Plaquetária , Contagem de Plaquetas
3.
Oncogene ; 37(31): 4226-4238, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29717260

RESUMO

While advances in laboratory automation has dramatically increased throughout of compound screening efforts, development of robust cell-based assays in relevant disease models remain resource-intensive and time-consuming, presenting a bottleneck to drug discovery campaigns. To address this issue, we present a modified gene trap approach to efficiently generate pathway-specific reporters that result in a robust "on" signal when the pathway of interest is inhibited. In this proof-of-concept study, we used vemurafenib and trametinib to identify traps that specifically detect inhibition of the mitogen-activated protein kinase (MAPK) pathway in a model of BRAFV600E driven human malignant melanoma. We demonstrate that insertion of our trap into particular loci results in remarkably specific detection of MAPK pathway inhibitors over compounds targeting any other pathway or cellular function. The accuracy of our approach was highlighted in a pilot screen of ~6000 compounds where 40 actives were detected, including 18 MEK, 10 RAF, and 3 ERK inhibitors along with a few compounds representing previously under-characterized inhibitors of the MAPK pathway. One such compound, bafetinib, a second generation BCR/ABL inhibitor, reduced phosphorylation of ERK and when combined with trametinib, both in vitro and in vivo, reduced growth of vemurafenib resistant melanoma cells. While piloted in a model of BRAF-driven melanoma, our results set the stage for using this approach to rapidly generate reporters against any transcriptionally active pathway across a wide variety of disease-relevant cell-based models to expedite drug discovery efforts.


Assuntos
Antineoplásicos/farmacologia , Melanoma/tratamento farmacológico , Melanoma/genética , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/genética , Animais , Linhagem Celular , Linhagem Celular Tumoral , Descoberta de Drogas/métodos , Feminino , Células HEK293 , Humanos , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/metabolismo , Piridonas/farmacologia , Pirimidinas/metabolismo , Pirimidinonas/farmacologia , Vemurafenib/farmacologia , Melanoma Maligno Cutâneo
4.
Sci Rep ; 8(1): 3716, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29487308

RESUMO

Stratospheric ozone has begun to recover in Antarctica since the implementation of the Montreal Protocol. However, the effects of ultraviolet (UV) radiation on tundra greenhouse gas fluxes are rarely reported for Polar Regions. In the present study, tundra N2O and CH4 fluxes were measured under the simulated reduction of UV radiation in maritime Antarctica over the last three-year summers. Significantly enhanced N2O and CH4 emissions occurred at tundra sites under the simulated reduction of UV radiation. Compared with the ambient normal UV level, a 20% reduction in UV radiation increased tundra emissions by an average of 8 µg N2O m-2 h-1 and 93 µg CH4 m-2 h-1, whereas a 50% reduction in UV radiation increased their emissions by an average of 17 µg N2O m-2 h-1 and 128 µg CH4 m-2 h-1. No statistically significant correlation (P > 0.05) was found between N2O and CH4 fluxes and soil temperature, soil moisture, total carbon, total nitrogen, NO3--N and NH4+-N contents. Our results confirmed that UV radiation intensity is an important factor affecting tundra N2O and CH4 fluxes in maritime Antarctica. Exclusion of the effects of reduced UV radiation might underestimate their budgets in Polar Regions with the recovery of stratospheric ozone.

5.
Mol Cell Endocrinol ; 473: 146-155, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29373840

RESUMO

Podocyte apoptosis in glomerular lesions has been found to have a dominant role in the progression of diabetic nephropathy. The present research aimed to explore the beneficial effect of icariin on diabetic podocytes by interfering in the process of apoptosis. Podocyte apoptosis was significantly exacerbated after high glucose treatment, with the level of reactive oxygen species (ROS) increasing simultaneously. Here, we demonstrated that icariin, which is a G protein-coupled estrogen receptor 1 (GPER) agonist, inhibited podocyte apoptosis by reducing ROS, maintaining the integrity of mitochondrial membranes. Moreover, the stabilization of mitochondria by icariin was reversed when GPER was knocked down in podocytes. Meanwhile, icariin inhibited the caspase cascade in podocyte apoptosis by promoting Bcl-2 expression and mitochondrial translocation. The above findings at least partly elucidated the mechanism by which icariin stabilized podocytes by inducing the mitochondrial Bcl-2 translocation and therefore preventing downstream apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Flavonoides/farmacologia , Glucose/toxicidade , Mitocôndrias/metabolismo , Podócitos/metabolismo , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Camundongos , Mitocôndrias/efeitos dos fármacos , Membranas Mitocondriais/efeitos dos fármacos , Membranas Mitocondriais/metabolismo , Podócitos/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo
6.
J Neurosci Res ; 94(11): 1231-45, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27638606

RESUMO

Krabbe's disease, also known as globoid cell leukodystrophy (GLD), is a lysosomal storage disease caused by the deficiency of the lysosomal enzyme ß-galactocerebrosidase (GALC), resulting in severe neurological manifestations related to demyelination secondary to elevated galactosylsphingosine (psychosine) with its subsequent cytotoxicity. The only available treatment is hematopoietic stem cell transplantation, which delays disease onset but does not prevent long-term neurological manifestations. This article describes the identification of small molecules that enhance mutant GALC activity, identified by quantitative cell-based high-throughput screening (qHTS). Using a specific neurologically relevant murine cell line (145M-Twi) modified to express common human hGALC-G270D mutant, we were able to detect GALC activity in a 1,536-well microplate format. The qHTS of approximately 46,000 compounds identified three small molecules that showed significant enhancements of residual mutant GALC activity in primary cell lines from GLD patients. These compounds were shown to increase the levels of GALC-G270D mutant in the lysosomal compartment. In kinetic assessments, these small molecules failed to disturb the GALC kinetic profile under acidic conditions, which is highly desirable for folding-assisting molecules operating in the endoplasmic reticulum and not affecting GALC catalytic properties in the lysosomal compartment. In addition, these small molecules rescued the decreased GALC activity at neutral pH and partially stabilized GALC under heat-denaturating conditions. These drug-like compounds can be used as the starting point to develop novel small-molecule agents to treat the progressive neurodegenerative course of GLD. © 2016 Wiley Periodicals, Inc.


Assuntos
Galactosilceramidase/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Leucodistrofia de Células Globoides/tratamento farmacológico , Bibliotecas de Moléculas Pequenas/química , Células Cultivadas , Relação Dose-Resposta a Droga , Fibroblastos/enzimologia , Galactosilceramidase/química , Galactosilceramidase/genética , Humanos , Leucodistrofia de Células Globoides/patologia , Mutação/genética , Polilisina/metabolismo , Transfecção
7.
Biochemistry ; 55(21): 3007-19, 2016 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-27030368

RESUMO

The Venezuelan equine encephalitis virus (VEEV) nonstructural protein 2 (nsP2) cysteine protease (EC 3.4.22.-) is essential for viral replication and is involved in the cytopathic effects (CPE) of the virus. The VEEV nsP2 protease is a member of MEROPS Clan CN and characteristically contains a papain-like protease linked to an S-adenosyl-l-methionine-dependent RNA methyltransferase (SAM MTase) domain. The protease contains an alternative active site motif, (475)NVCWAK(480), which differs from papain's (CGS(25)CWAFS), and the enzyme lacks a transition state-stabilizing residue homologous to Gln-19 in papain. To understand the roles of conserved residues in catalysis, we determined the structure of the free enzyme and the first structure of an inhibitor-bound alphaviral protease. The peptide-like E64d inhibitor was found to bind beneath a ß-hairpin at the interface of the SAM MTase and protease domains. His-546 adopted a conformation that differed from that found in the free enzyme; one or both of the conformers may assist in leaving group departure of either the amine or Cys thiolate during the catalytic cycle. Interestingly, E64c (200 µM), the carboxylic acid form of the E64d ester, did not inhibit the nsP2 protease. To identify key residues involved in substrate binding, a number of mutants were analyzed. Mutation of the motif residue, N475A, led to a 24-fold reduction in kcat/Km, and the conformation of this residue did not change after inhibition. N475 forms a hydrogen bond with R662 in the SAM MTase domain, and the R662A and R662K mutations both led to 16-fold decreases in kcat/Km. N475 forms the base of the P1 binding site and likely orients the substrate for nucleophilic attack or plays a role in product release. An Asn homologous to N475 is similarly found in coronaviral papain-like proteases (PLpro) of the Severe Acute Respiratory Syndrome (SARS) virus and Middle East Respiratory Syndrome (MERS) virus. Mutation of another motif residue, K480A, led to a 9-fold decrease in kcat and kcat/Km. K480 likely enhances the nucleophilicity of the Cys. Consistent with our substrate-bound models, the SAM MTase domain K706A mutation increased Km 4.5-fold to 500 µM. Within the ß-hairpin, the N545A mutation slightly but not significantly increased kcat and Km. The structures and identified active site residues may facilitate the discovery of protease inhibitors with antiviral activity.


Assuntos
Cisteína Endopeptidases/química , Cisteína Endopeptidases/genética , Vírus da Encefalite Equina Venezuelana/enzimologia , Mutação/genética , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Sequência de Aminoácidos , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Cisteína Endopeptidases/metabolismo , Hidrólise , Cinética , Modelos Moleculares , Papaína/metabolismo , Conformação Proteica , S-Adenosilmetionina/metabolismo , Homologia de Sequência de Aminoácidos , Proteínas não Estruturais Virais/metabolismo
8.
Nature ; 453(7197): 925-9, 2008 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-18548070

RESUMO

Selective lowering of Abeta42 levels (the 42-residue isoform of the amyloid-beta peptide) with small-molecule gamma-secretase modulators (GSMs), such as some non-steroidal anti-inflammatory drugs, is a promising therapeutic approach for Alzheimer's disease. To identify the target of these agents we developed biotinylated photoactivatable GSMs. GSM photoprobes did not label the core proteins of the gamma-secretase complex, but instead labelled the beta-amyloid precursor protein (APP), APP carboxy-terminal fragments and amyloid-beta peptide in human neuroglioma H4 cells. Substrate labelling was competed by other GSMs, and labelling of an APP gamma-secretase substrate was more efficient than a Notch substrate. GSM interaction was localized to residues 28-36 of amyloid-beta, a region critical for aggregation. We also demonstrate that compounds known to interact with this region of amyloid-beta act as GSMs, and some GSMs alter the production of cell-derived amyloid-beta oligomers. Furthermore, mutation of the GSM binding site in the APP alters the sensitivity of the substrate to GSMs. These findings indicate that substrate targeting by GSMs mechanistically links two therapeutic actions: alteration in Abeta42 production and inhibition of amyloid-beta aggregation, which may synergistically reduce amyloid-beta deposition in Alzheimer's disease. These data also demonstrate the existence and feasibility of 'substrate targeting' by small-molecule effectors of proteolytic enzymes, which if generally applicable may significantly broaden the current notion of 'druggable' targets.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/metabolismo , Anti-Inflamatórios não Esteroides/metabolismo , Anti-Inflamatórios não Esteroides/farmacologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/enzimologia , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/antagonistas & inibidores , Precursor de Proteína beta-Amiloide/genética , Animais , Anti-Inflamatórios não Esteroides/química , Sítios de Ligação/efeitos dos fármacos , Células CHO , Linhagem Celular Tumoral , Cricetinae , Cricetulus , Feminino , Humanos , Camundongos , Ligação Proteica/efeitos dos fármacos , Receptores Notch/genética , Receptores Notch/metabolismo , Especificidade por Substrato/efeitos dos fármacos
9.
J Biol Chem ; 280(51): 41987-96, 2005 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-16236717

RESUMO

gamma-Secretase is an unusual protease with an intramembrane catalytic site that cleaves many type I membrane proteins, including the amyloid beta-protein (Abeta) precursor (APP) and the Notch receptor. Genetic and biochemical studies have identified four membrane proteins as components of gamma-secretase: heterodimeric presenilin composed of its N- and C-terminal fragments, nicastrin, Aph-1, and Pen-2. Here we demonstrated that certain compounds, including protein kinase inhibitors and their derivatives, act directly on purified gamma-secretase to selectively block cleavage of APP- but not Notch-based substrates. Moreover, ATP activated the generation of the APP intracellular domain and Abeta, but not the generation of the Notch intracellular domain by the purified protease complex, and was a direct competitor of the APP-selective inhibitors, as were other nucleotides. In accord, purified gamma-secretase bound specifically to an ATP-linked resin. Finally, a photoactivable ATP analog specifically labeled presenilin 1-C-terminal fragments in purified gamma-secretase preparations; the labeling was blocked by ATP itself and APP-selective gamma-secretase inhibitors. We concluded that a nucleotide-binding site exists within gamma-secretase, and certain compounds that bind to this site can specifically modulate the generation of Abeta while sparing Notch. Drugs targeting the gamma-secretase nucleotide-binding site represent an attractive strategy for safely treating Alzheimer disease.


Assuntos
Trifosfato de Adenosina/metabolismo , Endopeptidases/metabolismo , Secretases da Proteína Precursora do Amiloide , Animais , Ácido Aspártico Endopeptidases , Benzamidas , Células CHO , Cricetinae , Inibidores Enzimáticos/farmacologia , Células HeLa , Humanos , Hidrólise , Mesilato de Imatinib , Marcadores de Fotoafinidade , Piperazinas/farmacologia , Pirimidinas/farmacologia , Receptores Notch/metabolismo , Especificidade por Substrato
10.
Biochemistry ; 43(30): 9774-89, 2004 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-15274632

RESUMO

Gamma-secretase is a member of an unusual class of proteases with intramembrane catalytic sites. This enzyme cleaves many type I membrane proteins, including the amyloid beta-protein (Abeta) precursor (APP) and the Notch receptor. Biochemical and genetic studies have identified four membrane proteins as components of gamma-secretase: heterodimeric presenilin (PS) composed of its N- and C-terminal fragments (PS-NTF/CTF), a mature glycosylated form of nicastrin (NCT), Aph-1, and Pen-2. Recent data from studies in Drosophila, mammalian, and yeast cells suggest that PS, NCT, Aph-1, and Pen-2 are necessary and sufficient to reconstitute gamma-secretase activity. However, many unresolved issues, in particular the possibility of other structural or regulatory components, would be resolved by actually purifying the enzyme. Here, we report a detailed, multistep purification procedure for active gamma-secretase and an initial characterization of the purified protease. Extensive mass spectrometry of the purified proteins strongly suggests that PS-NTF/CTF, mNCT, Aph-1, and Pen-2 are the components of active gamma-secretase. Using the purified gamma-secretase, we describe factors that modulate the production of specific Abeta species: (1) phosphatidylcholine and sphingomyelin dramatically improve activity without changing cleavage specificity within an APP substrate; (2) increasing CHAPSO concentrations from 0.1 to 0.25% yields a approximately 100% increase in Abeta42 production; (3) exposure of an APP-based recombinant substrate to 0.5% SDS modulates cleavage specificity from a disease-mimicking pattern (high Abeta42/43) to a physiological pattern (high Abeta40); and (4) sulindac sulfide directly and preferentially decreases Abeta42 cleavage within the purified complex. Taken together, our results define a procedure for purifying active gamma-secretase and suggest that the lipid-mediated conformation of both enzyme and substrate regulate the production of the potentially neurotoxic Abeta42 and Abeta43 peptides.


Assuntos
Endopeptidases/química , Endopeptidases/isolamento & purificação , Sulindaco/análogos & derivados , Ácido gama-Aminobutírico/análogos & derivados , Sequência de Aminoácidos , Secretases da Proteína Precursora do Amiloide , Peptídeos beta-Amiloides/metabolismo , Animais , Ácido Aspártico Endopeptidases , Células CHO , Cricetinae , Humanos , Hidrólise , Cinética , Lipídeos/química , Substâncias Macromoleculares , Espectrometria de Massas , Glicoproteínas de Membrana/isolamento & purificação , Proteínas de Membrana/isolamento & purificação , Proteínas de Membrana/metabolismo , Camundongos , Dados de Sequência Molecular , Oligopeptídeos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/isolamento & purificação , Fragmentos de Peptídeos/metabolismo , Peptídeo Hidrolases , Peptídeos/química , Presenilina-1 , Inibidores de Proteases/química , Receptores Notch , Dodecilsulfato de Sódio/química , Especificidade por Substrato , Sulindaco/química , Triglicerídeos/química , Ácido gama-Aminobutírico/química
11.
Biochemistry ; 42(1): 137-44, 2003 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-12515548

RESUMO

Gamma-secretase is an intramembrane-cleaving protease whose substrates include Notch and the amyloid precursor protein (APP). On the basis of initial genetic and pharmacologic data, the gamma-secretase activity responsible for cleavage of both proteins appears to be identical. However, apparent differences in the cleavage site and in sequence specificity raise questions about the degree of similarity between Notch and APP gamma-like proteolysis. In an effort to resolve this issue directly, we established an in vitro gamma-secretase activity assay that cleaves both APP- and Notch-based substrates, C100Flag and N100Flag. Analysis with specific gamma-secretase inhibitors, dominant-negative gamma-secretase preparations, and antibody co-immunoprecipitations all demonstrated identical cleavage of these substrates. Most importantly, we found that these substrates prevented cleavage of each other, indicating that the same gamma-secretase complex can cleave either protein. Finally, we provide evidence that both substrates are cut at two distinct regions in the transmembrane domain. These data resolve some of the apparent conflicts and strongly indicate that Notch and APP are proteolyzed by the same enzyme(s).


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Endopeptidases/metabolismo , Proteínas de Membrana/metabolismo , Sequência de Aminoácidos , Secretases da Proteína Precursora do Amiloide , Animais , Ácido Aspártico Endopeptidases , Ligação Competitiva/genética , Células CHO , Cricetinae , Células HeLa , Humanos , Hidrólise , Proteínas de Membrana/genética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Oligopeptídeos , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Peptídeos/síntese química , Peptídeos/genética , Presenilina-1 , Presenilina-2 , Estrutura Terciária de Proteína/genética , Receptores Notch , Proteínas Recombinantes de Fusão/síntese química , Proteínas Recombinantes de Fusão/metabolismo , Solubilidade , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA