Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neurochem Int ; 171: 105641, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37952830

RESUMO

Among diseases of the central nervous system (CNS), spinal cord injury (SCI) has a high fatality rate. It has been proven that P2Y G protein-coupled purinergic receptors have a neuroprotective role in apoptosis and regeneration inside the damaged spinal cord. The P2Y12 receptor (P2Y12R) has recently been linked to peripheral neuropathy and stroke. However, the role of P2Y12R after SCI remains unclear. Our study randomly divided C57BL/6J female mice into 3 groups: Sham+DMSO, SCI+DMSO, and SCI+MRS2395. MRS2395 as a P2Y12R inhibitor was intraperitoneally injected at a dose of 1.5 mg/kg once daily for 7 days. We showed that the P2Y12R was markedly activated after injury, and it was double labeled with the microglial and neuron. Behavioral tests were employed to assess motor function recovery. By using immunofluorescence staining, the NeuN expression level was detected. The morphology of neurons was observed by hematoxylin-eosin and Nissl staining. P2Y12R, Bax, GFAP, PCNA and calbindin expression levels were detected using Western blot. Meanwhile, mitochondria and myelin sheath were observed by transmission electron microscopy (TEM). Our findings demonstrated that MRS2395 significantly enhanced motor function induced by SCI and that was used to alleviate apoptosis and astrocyte scarring. NeuN positive cells in the SCI group were lower than in the therapy group, although Bax, GFAP, PCNA and calbindin expression levels were considerably higher. Moreover, following MRS2395 therapy, the histological damage was reversed. A notable improvement in myelin sheath and mitochondrial morphology was seen in the therapy group. Together, our findings indicate that activation of P2Y12R in damaged spinal cord may be a critical event and suggest that inhibition of P2Y12R might be a feasible therapeutic strategy for treating SCI.


Assuntos
Doenças Desmielinizantes , Traumatismos da Medula Espinal , Ratos , Camundongos , Feminino , Animais , Ratos Sprague-Dawley , Antagonistas do Receptor Purinérgico P2Y/uso terapêutico , Recuperação de Função Fisiológica , Dimetil Sulfóxido/uso terapêutico , Antígeno Nuclear de Célula em Proliferação/metabolismo , Antígeno Nuclear de Célula em Proliferação/uso terapêutico , Proteína X Associada a bcl-2/metabolismo , Camundongos Endogâmicos C57BL , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/patologia , Medula Espinal/metabolismo , Apoptose , Calbindinas
2.
Front Immunol ; 14: 1164137, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37492583

RESUMO

Osteoarthritis (OA) is a common degenerative disease in mammals. However, its pathogenesis remains unclear. Studies indicate that OA is not only an aging process that but also an inflammation-related disease. Synovitis is closely related to the progression of OA, and synovial macrophages are crucial participants in synovitis. Instead of being a homogeneous population, macrophages are polarized into M1 or M2 subtypes in OA synovial tissues. Polarization is highly associated with OA severity. However, the M1/M2 ratio cannot be the only factor in OA prognosis because intermediate stages of macrophages also exist. To better understand the mechanism of this heterogeneous disease, OA subtypes of synovial macrophages classified by gene expression were examined. Synovial macrophages do not act alone; they interact with surrounding cells such as synovial fibroblasts, osteoclasts, chondrocytes, lymphocytes and even adipose cells through a paracrine approach to exacerbate OA. Treatments targeting synovial macrophages and their polarization are effective in relieving pain and protecting cartilage during OA development. In this review, we describe how synovial macrophages and their different polarization states influence the progression of OA. We summarize the current knowledge of the interactions between macrophages and other joint cells and examine the current research on new medications targeting synovial macrophages.


Assuntos
Osteoartrite , Sinovite , Animais , Humanos , Osteoartrite/metabolismo , Macrófagos/metabolismo , Membrana Sinovial/patologia , Sinovite/metabolismo , Osteoclastos/metabolismo , Mamíferos
3.
Microsc Res Tech ; 86(10): 1378-1390, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37129001

RESUMO

Ferroptosis is a newly defined form of cell death involved in neurologic disease. Resveratrol is a non-flavonoid polyphenolic compound with anti-inflammatory and antioxidant properties, but its potential therapeutic mechanism in spinal cord injury (SCI) remains unknown. Therefore, this study evaluates the mechanism by which resveratrol promotes neurological and motor function recovery in mice with SCI. The motor function of mice was evaluated using the Basso Mouse Scale score and footprint test. The effect of resveratrol on the neuronal cell state was observed using NeuN, fluoro-Jade C, and Nissl staining. The expression of iron content in injured segments was observed using Perls blue and Diaminobenzidine staining. The effect of resveratrol on the levels of malondialdehyde, glutathione, Fe2+ , and glutathione peroxidase 4 enzyme activity was also investigated. The mitochondrial ultrastructures of injured segment cells were observed using transmission electron microscope, while the protein levels of ferroptosis-related targets were detected using Western blot. Our findings show that resveratrol improves motor function after SCI and has certain neuroprotective effects; in ferroptosis-related studies, resveratrol inhibited the expression of ferroptosis-related proteins and ions. Resveratrol improved changes in mitochondrial morphology. Mechanistically, the Nrf2 inhibitor ML385 reversed the inhibitory effect of resveratrol on ferroptosis-related genes, indicating that resveratrol inhibits ferroptosis through the Nrf2/GPX4 pathway. Our findings elucidate that resveratrol promotes functional recovery, inhibits ferroptosis post-SCI, and provides an experimental basis for subsequent clinical translational research. Our study shows that resveratrol inhibits the production of lipid peroxide and the accumulation of iron by activating Nrf2/GPX4 signaling pathway, thereby inhibiting neuronal ferroptosis. At the same time, it can promote the recovery of motor function of mice.


Assuntos
Ferroptose , Traumatismos da Medula Espinal , Camundongos , Animais , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/farmacologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/uso terapêutico , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/farmacologia , Fator 2 Relacionado a NF-E2/uso terapêutico , Traumatismos da Medula Espinal/tratamento farmacológico , Ferro/metabolismo , Medula Espinal
4.
Life Sci ; 322: 121653, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37011875

RESUMO

AIMS: Inflammation-coupling tubular damage (ICTD) contributes to pathogenesis of septic acute kidney injury (AKI), in which insulin-like growth factor-binding protein 7 (IGFBP-7) serves as a biomarker for risk stratification. The current study aims to discern how IGFBP-7 signalling influences ICTD, the mechanisms that underlie this process and whether blockade of the IGFBP-7-dependent ICTD might have therapeutic value for septic AKI. MATERIALS AND METHODS: In vivo characterization was carried out in B6/JGpt-Igfbp7em1Cd1165/Gpt mice subjected to cecal ligation and puncture (CLP). Transmission electron microscopy, immunofluorescence, flow cytometry, immunoblotting, ELISA, RT-qPCR and dual-luciferase reporter assays were used to determine mitochondrial functions, cell apoptosis, cytokine secretion and gene transcription. KEY FINDINGS: ICTD augments the transcriptional activity and protein secretion of tubular IGFBP-7, which enables an auto- and paracrine signalling via deactivation of IGF-1 receptor (IGF-1R). Genetic knockout (KO) of IGFBP-7 provides renal protection, improves survival and resolves inflammation in murine models of cecal ligation and puncture (CLP), while administering recombinant IGFBP-7 aggravates ICTD and inflammatory invasion. IGFBP-7 perpetuates ICTD in a NIX/BNIP3-indispensable fashion through dampening mitophagy that restricts redox robustness and preserves mitochondrial clearance programs. Adeno-associated viral vector 9 (AAV9)-NIX short hairpin RNA (shRNA) delivery ameliorates the anti-septic AKI phenotypes of IGFBP-7 KO. Activation of BNIP3-mediated mitophagy by mitochonic acid-5 (MA-5) effectively attenuates the IGFBP-7-dependent ICTD and septic AKI in CLP mice. SIGNIFICANCE: Our findings identify IGFBP-7 is an auto- and paracrine manipulator of NIX-mediated mitophagy for ICTD escalation and propose that targeting the IGFBP-7-dependent ICTD represents a novel therapeutic strategy against septic AKI.


Assuntos
Injúria Renal Aguda , Sepse , Somatomedinas , Camundongos , Animais , Mitofagia/fisiologia , Injúria Renal Aguda/metabolismo , Sepse/metabolismo , Inflamação/complicações , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo
5.
Int J Biol Sci ; 18(13): 5168-5184, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35982894

RESUMO

High-dose ascorbate confers tubular mitophagy responsible for septic acute kidney injury (AKI) amelioration, yet its biological roles in immune regulation remain poorly understood. Methods: The role of tubular mitophagy in macrophage polarization upon high-dose ascorbate treatment was assessed by fluorescence-activated cell sorter analysis (FACS) in vitro and by immunofluorescence in AKI models of LPS-induced endotoxemia (LIE) from Pax8-cre; Atg7 flox/flox mice. The underlying mechanisms were revealed by RNA-sequencing, gene set enrichment analysis (GSEA), luciferase reporter, chromatin immunoprecipitation (ChIP) and adeno-associated viral vector serotype 9 (AAV9) delivery assays. Results: High-dose ascorbate enables conversion of macrophages from a pro-inflammatory M1 subtype to an anti-inflammatory M2 subtype in murine AKI models of LIE, leading to decreased renal IL-1ß and IL-18 production, reduced mortality and alleviated tubulotoxicity. Blockade of tubular mitophagy abrogates anti-inflammatory macrophages polarization under the high-dose ascorbate-exposed coculture systems. Similar abrogations are verified in LIE mice with tubular epithelium-specific ablation of Atg7, where the high-dose ascorbate-inducible renal protection and survival improvement are substantially weaker than their control littermates. Mechanistically, high-dose ascorbate stimulates tubular secretion of serpin family G member 1 (SerpinG1) through maintenance of mitophagy, for which nuclear factor-erythroid 2 related factor 2 (NRF2) transactivation is required. SerpinG1 perpetuates anti-inflammatory macrophages to prevent septic AKI, while kidney-specific disruption of SerpinG1 by adeno-associated viral vector serotype 9 (AAV9)-short hairpin RNA (shRNA) delivery thwarts the anti-inflammatory macrophages polarization and anti-septic AKI efficacy of high-dose ascorbate. Conclusion: Our study identifies SerpinG1 as an intermediate of tubular mitophagy-orchestrated myeloid function during septic AKI and reveals a novel rationale for ascorbate-based therapy.


Assuntos
Injúria Renal Aguda , Ácido Ascórbico , Proteína Inibidora do Complemento C1 , Macrófagos , Fator 2 Relacionado a NF-E2 , Injúria Renal Aguda/tratamento farmacológico , Animais , Ácido Ascórbico/farmacologia , Proteína Inibidora do Complemento C1/genética , Rim , Túbulos Renais/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/genética , Ativação Transcricional
6.
J Thromb Thrombolysis ; 51(3): 798-804, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32852670

RESUMO

Deep vein thrombosis (DVT) in hemiplegic patients mainly affects hemiplegic limbs, DVT can also occur only in healthy limbs, and some hemiplegic patients have DVT in both limbs. Characteristics and risk factors of DVT in hemiplegic, healthy, and bilateral limbs are unknown. To describe the proportion, risk factors, extent, and timing of DVT in hemiplegic, healthy and bilateral limbs. A 10-year retrospective review of consecutive patients was performed. DVT affected hemiplegic limbs in 34 (62%), healthy limbs in 11 (20%), and was bilateral in 10 (18%). DVT was more likely to develop in healthy limbs of hemiplegic patients without surgery (odds ratio (OR) 0.022; 95% confidence interval (CI) 0.001-0.922), and without diabetes (OR 0.023, 95% CI 0.001-0.853). Among the veins at the level of which DVT occurred, intermuscular veins represented 20 (45%) in hemiplegic, 5 (37%) in healthy, and 6 (74%) in bilateral limbs. The median time that DVT occurred after hemiplegia onset was 18 days (interquartile range [IQR] 9-79) in hemiplegic, 17 days (IQR 10-56) in healthy, and 21 days (IQR 8-27) in bilateral limbs. Early and effective prevention of DVT after surgery and optimal management of diabetes may reduce the risk of DVT in bilateral limbs. It's important to prevent proximal extension of calf vein DVT. DVT prophylaxis should be started early and continued for at least 3 weeks after hemiplegia onset.


Assuntos
Diabetes Mellitus , Hemiplegia , Perna (Membro)/irrigação sanguínea , Veias , Trombose Venosa , Idoso , Anticoagulantes/uso terapêutico , Quimioprevenção/métodos , Quimioprevenção/estatística & dados numéricos , Traumatismos Craniocerebrais/complicações , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/epidemiologia , Feminino , Hemiplegia/complicações , Hemiplegia/diagnóstico , Hemiplegia/etiologia , Humanos , Masculino , Prognóstico , Estudos Retrospectivos , Medição de Risco , Fatores de Risco , Índice de Gravidade de Doença , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/diagnóstico , Procedimentos Cirúrgicos Operatórios/estatística & dados numéricos , Trombose Venosa/diagnóstico , Trombose Venosa/etiologia , Trombose Venosa/fisiopatologia , Trombose Venosa/prevenção & controle
7.
Neurochem Int ; 140: 104839, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32853751

RESUMO

Spinal cord injury (SCI) is an independent risk factor for type 2 diabetes, and may induce insulin resistance that leads to this disease. Studies have shown that greater phosphoinositide 3-kinase (PI3K) activation in the hypothalamus leads to activation of the anti-inflammatory pathway, and the anti-inflammatory reflex may protect against insulin resistance and type 2 diabetes. However, the importance of this phenomenon in type 2 diabetes pathogenesis after SCI remains elusive. In the present study, the expression of c-Fos in the hypothalamus of rats with SCI was elevated, and the hypothalamus injury was observer following SCI. Then we showed that SCI could induce increased levels of blood glucose and glucose tolerance in rats. Also, we found that SCI could damage the liver, adipocyte and pancreas, and led to lipid position in liver. Western blots were used to detect the level of PI3K and p-Akt in the hypothalamus, and the results showed a significant downregulation of PI3K and p-Akt after SCI. Furthermore, to verify the activity of the PI3K signaling pathway, immunofluorescence was used to examine the expression of neurons positive for p-S6 (a marker of PI3K activation) after SCI. The results showed that the expression of p-S6-positive neurons decreased after SCI. In addition, the effect of SCI on peripheral inflammation was also investigated. Following SCI, the serum levels of tumor necrosis factor-α, interleukin (IL)-1ß, and IL-6 increased. Collectively, our results suggest abnormality in glucose metabolism after SCI, and demonstrate that SCI may impair activation of the PI3K signaling pathway in the hypothalamus. The reduced activity of the PI3K signaling pathway in the hypothalamus may lead to peripheral inflammation, which might be the mechanism underlying the development of insulin resistance and type 2 diabetes following SCI.


Assuntos
Hipotálamo/metabolismo , Resistência à Insulina/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/fisiologia , Traumatismos da Medula Espinal/metabolismo , Animais , Hipotálamo/patologia , Masculino , Ratos , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/patologia , Vértebras Torácicas/lesões
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA