Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Semin Arthritis Rheum ; 66: 152436, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38714073

RESUMO

OBJECTIVE: To identify factors associated with non-treatment with biologic and non-biologic disease modifying anti-rheumatic drugs (DMARDs) during the 12 months after initial inflammatory arthritis (IA) diagnosis. METHODS: We identified Veterans with incident IA diagnosed in 2007-2019. We assessed time to treatment with Kaplan-Meier curves. We identified associations between non-treatment and factors relating to patients, providers, and the health system with multivariate Generalized Estimation Equation (GEE) log-Poisson. Subgroup analyses included IA subtypes (rheumatoid arthritis [RA], psoriatic arthritis [PsA], and ankylosing spondylitis [AS]) and timeframes of the initial IA diagnosis (2007-11, 2012-15, and 2016-19). RESULTS: Of 18,318 study patients, 40.7 % did not receive treatment within 12 months after diagnosis. In all patients, factors associated with non-treatment included Black race (hazard ratio, 95 % confidence interval: 1.13, 1.08-1.19), Hispanic ethnicity (1.14, 1.07-1.22), Charlson Comorbidity Index ≥2, (1.15, 1.11-1.20), and opiate use (1.09, 1.05-1.13). Factors associated with higher frequency of DMARD treatment included married status (0.86, 0.81-0.91); erosion in joint imaging report (HR: 0.86, 0.81-0.91); female diagnosing provider (0.90, CI: 0.85-0.96), gender concordance between patient and provider (0.91, CI: 0.86-0.97), and diagnosing provider specialty of rheumatology (0.53, CI: 0.49-0.56). CONCLUSION: A high proportion of Veterans with IA were not treated with a biologic or non-biologic DMARD within one year after their initial diagnosis. A wide range of factors were associated with non-treatment of IA that may represent missed opportunities for improving the quality of care through early initiation of DMARDs.


Assuntos
Antirreumáticos , Artrite Psoriásica , Artrite Reumatoide , Espondilite Anquilosante , Veteranos , Humanos , Masculino , Feminino , Espondilite Anquilosante/tratamento farmacológico , Artrite Reumatoide/tratamento farmacológico , Artrite Psoriásica/tratamento farmacológico , Artrite Psoriásica/diagnóstico , Antirreumáticos/uso terapêutico , Pessoa de Meia-Idade , Veteranos/estatística & dados numéricos , Estados Unidos , Idoso , Estudos de Coortes , Adulto , Tempo para o Tratamento/estatística & dados numéricos
2.
BMC Vet Res ; 20(1): 167, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689278

RESUMO

Arginine, which is metabolized into ornithine, proline, and nitric oxide, plays an important role in embryonic development. The present study was conducted to investigate the molecular mechanism of arginine in proliferation, differentiation, and physiological function of porcine trophoblast cells (pTr2) through metabolic pathways. The results showed that arginine significantly increased cell viability (P < 0.05). The addition of arginine had a quadratic tendency to increase the content of progesterone (P = 0.06) and protein synthesis rate (P = 0.03), in which the maximum protein synthesis rate was observed at 0.4 mM arginine. Arginine quadratically increased (P < 0.05) the intracellular contents of spermine, spermidine and putrescine, as well as linearly increased (P < 0.05) the intracellular content of NO in a dose-dependent manner. Arginine showed a quadratic tendency to increase the content of putrescine (P = 0.07) and a linear tendency to increase NO content (P = 0.09) in cell supernatant. Moreover, increasing arginine activated (P < 0.05) the mRNA expressions for ARG, ODC, iNOS and PCNA. Furthermore, inhibitors of arginine metabolism (L-NMMA and DFMO) both inhibited cell proliferation, while addition of its metabolites (NO and putrescine) promoted the cell proliferation and cell cycle, the mRNA expressions of PCNA, EGF and IGF-1, and increased (P < 0.05) cellular protein synthesis rate, as well as estradiol and hCG secretion (P < 0.05). In conclusion, our results suggested that arginine could promote cell proliferation and physiological function by regulating the metabolic pathway. Further studies showed that arginine and its metabolites modulate cell function mainly through ß-catenin and mTOR pathways.


Assuntos
Arginina , Diferenciação Celular , Proliferação de Células , Serina-Treonina Quinases TOR , Trofoblastos , beta Catenina , Animais , Arginina/farmacologia , Arginina/metabolismo , Trofoblastos/efeitos dos fármacos , Trofoblastos/metabolismo , Suínos , Proliferação de Células/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Diferenciação Celular/efeitos dos fármacos , beta Catenina/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Óxido Nítrico/metabolismo , Linhagem Celular
3.
J Med Chem ; 67(6): 4950-4976, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38456618

RESUMO

Histone deacetylases (HDACs) inhibitors such as vorinostat (SAHA) has been used to treat hematologic malignancies (rather than solid tumors) and have been found to suppress the JAK/STAT, a critical signal pathway for antitumor immunity, while PARP7 inhibitor RBN-2397 could activate the type I interferons (IFN-I) pathway, facilitating downstream effects such as STAT1 phosphorylation and immune activation. To elucidate whether simultaneous inhibition of these two targets could interfere with these two signal pathways, a series of pyridazinone-based PARP7/HDACs dual inhibitors have been designed, synthesized, and evaluated in vitro and in vivo experiments. Compound 9l was identified as a potent and balanced dual inhibitor for the first time, exhibiting excellent antitumor capabilities both in vitro and in vivo. This suggests that 9l can be used as a valuable tool molecule for investigating the relationship between anticancer immunity and HDAC inhibition.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Vorinostat/farmacologia , Relação Estrutura-Atividade , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Proliferação de Células
4.
Bioorg Chem ; 142: 106957, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37939507

RESUMO

Natural products represent a paramount source of novel drugs. Numerous plant-derived natural products have demonstrated potent anti-tumor properties, thereby garnering considerable interest in their potential as anti-tumor drugs. This review compiles an overview of 242 recently discovered natural products, spanning the period from 2018 to the present. These natural products, which include 69 terpenoids, 42 alkaloids, 39 flavonoids, 21 steroids, 14 phenylpropanoids, 5 quinolines and 52 other compounds, are characterized by their respective chemical structures, anti-tumor activities, and mechanisms of action. By providing an essential reference and fresh insights, this review aims to support and inspire researchers engaged in the fields of natural products and anti-tumor drug discovery.


Assuntos
Alcaloides , Antineoplásicos , Produtos Biológicos , Produtos Biológicos/farmacologia , Produtos Biológicos/química , Alcaloides/farmacologia , Alcaloides/química , Plantas/química , Flavonoides/química , Antineoplásicos/farmacologia
5.
Chin J Nat Med ; 21(12): 916-926, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38143105

RESUMO

Natural products are essential sources of antitumor drugs. One such molecule, ß-elemene, is a potent antitumor compound extracted from Curcuma wenyujin. In the present investigation, a series of novel 13,14-disubstituted nitric oxide (NO)-donor ß-elemene derivatives were designed, with ß-elemene as the foundational compound, and subsequently synthesized to evaluate their therapeutic potential against leukemia. Notably, the derivative labeled as compound 13d demonstrated a potent anti-proliferative activity against the K562 cell line, with a high NO release. In vivo studies indicated that compound 13d could effectively inhibit tumor growth, exhibiting no discernible toxic manifestations. Specifically, a significant tumor growth inhibition rate of 62.9% was observed in the K562 xenograft tumor mouse model. The accumulated data propound the potential therapeutic application of compound 13d in the management of leukemia.


Assuntos
Leucemia , Sesquiterpenos , Humanos , Camundongos , Animais , Linhagem Celular Tumoral , Doadores de Óxido Nítrico/farmacologia , Sesquiterpenos/farmacologia , Leucemia/tratamento farmacológico , Bioensaio , Proliferação de Células
6.
Ann Surg ; 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37982526

RESUMO

OBJECTIVE: The aim of this study was to investigate the association between storage time of transfused red blood cells and risks of infections after clean-contaminated surgery. SUMMARY BACKGROUND DATA: Storage lesions of red blood cells can aggravate transfusion-related immunomodulation. Very few randomized controlled trials have investigated the impacts of storage time on postoperative outcomes in non-cardiac patients. METHODS: We included adult patients who had undergone clean-contaminated surgery from 2014 to 2018 and received allogeneic red blood cell transfusion. In transfusion episode-level analysis, the exposure was the storage time of each transfusion episode. In patient-level analysis, the exposures were the mean, weighted mean, maximum storage time, and Scalar Age of Blood Index of red blood cells transfused into each patient. The primary outcome was infections that developed after transfusions within postoperative Day 30. RESULTS: The 4046 included patients received 11604 transfusion episodes. Of these, 1025 (25.3%) patients developed postoperative infections. An increased storage time of transfused red blood cells was not associated with increased odds of postoperative infections in either transfusion episode-level analysis [odds ratio (OR) 1.03 per five days, 95% confidence interval (CI) 0.95 to 1.11] or patient-level analysis (mean: OR 1.02, 95% CI 0.95 to 1.10; weighted mean: OR 1.02, 95% CI 0.95 to 1.10; maximum: OR 1.06, 95% CI 0.98 to 1.14; Scalar Age of Blood Index: OR 0.99, 95% CI 0.96 to 1.03), after adjusting 17 confounders. CONCLUSIONS: Prolonged storage time of transfused red blood cells was not associated with increased risks of infections after clean-contaminated surgery.

7.
Bioorg Chem ; 140: 106753, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37595397

RESUMO

Polyphenols such as resveratrol, honokiol and nordihydroguaiaretic acid are widely existing in nature products or synthetic compounds with interesting biological activities. Inspired by their structural feature, a total of 49 1,3-diaryl propane-based polyphenols were designed and synthesized through Claisen rearrangement reaction. New compounds were initially assessed for their anti-proliferative activities against various cancer cell lines (PC-3, U87MG, U251, HCT116) at a concentration of 50 µM, and the results guided the SAR of this series of compounds. Further screening of selected compounds against seven cancer cell lines (three additional colon cancer cell lines namely COLO205, HT29 and SW480 were chosen) led to the identification of two advanced leads 2t and 3t with IC50 values ranging from 8.2 ± 0.1 to 19.3 ± 1.9 µM. Both compounds also showed promising anti-proliferative activities against COLO205 in dose- and time-dependent manners. Furthermore, 2t and 3t exhibited good anti-tumor efficacy in COLO205 xenografted mice model with TGI values ranging from 38% to 58%. These results warrant the further investigation of this series of compounds.


Assuntos
Produtos Biológicos , Neoplasias do Colo , Animais , Camundongos , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Propano , Resveratrol , Modelos Animais de Doenças
8.
ChemMedChem ; 18(14): e202200683, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37126396

RESUMO

Histone deacetylases (HDACs) are validated targets for the development of anticancer drugs in epigenetics. We have designed and synthesized a series of novel HDAC inhibitors based on pyrrolo[2,3-d]pyrimidine and pyrrolo[2,3-b]pyridine scaffolds. Compound B3 {(E)-3-(4-(((1-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)piperidin-4-yl)amino)methyl)phenyl)-N-hydroxyacrylamide} exhibits potent inhibitory activity against HDACs 1, 2, 3, 6, and 8 with IC50 values of 5.2, 6.0, 8.8, 4.4, and 173.0 nM, respectively. It exhibited potent antiproliferative effects against three tumour cell lines (IC50 values of 0.13, 0.37, and 1.11 µM, against MV-4-11, K562, and WSU-DLCL-2 cells, respectively) with two- to sixfold improvement relative to suberoylanilide hydroxamic acid (SAHA). Mechanistic studies on WSU-DLCL-2 cells revealed that B3 exhibits anticancer effects through the induction of G0 /G1 -phase arrest and promotion of apoptosis. The results of this study warrant further investigation of this compound series for the treatment of hematological malignancy.


Assuntos
Antineoplásicos , Inibidores de Histona Desacetilases , Inibidores de Histona Desacetilases/farmacologia , Relação Estrutura-Atividade , Ensaios de Seleção de Medicamentos Antitumorais , Desenho de Fármacos , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Pirimidinas/farmacologia , Piridinas/farmacologia , Proliferação de Células , Ácidos Hidroxâmicos/farmacologia
9.
J Enzyme Inhib Med Chem ; 38(1): 2195991, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37013860

RESUMO

ß-Elemene is the major active ingredient of TCM anticancer drug elemene extracts. To further improve its antitumor activity and poor solubility, a polar HDACi pharmacophore was incorporated its scaffold. Systematic SAR studies led to the discovery of compounds 27f and 39f, which exhibited potent inhibitory activity against HDACs (HDAC1: IC50 = 22 and 9 nM; HDAC6: 8 and 14 nM, respectively). In cellular levels, 27f and 39f significantly inhibited cell proliferation of five tumour cell lines (IC50: 0.79 - 4.42 µM). Preliminary mechanistic studies indicated that 27f and 39f efficiently induced cell apoptosis. Unexpectedly, compound 39f could also stimulate cell cycle arrest in G1 phase. Further in vivo study in WSU-DLCL-2 xenografted mouse model validated the antitumor activities of 27f, without significant toxicity. The results suggest the therapeutic potential of these HDACs inhibitors in lymphoma and provide valuable insight and understanding for further structural optimisation around ß-elemene scaffold.


Assuntos
Antineoplásicos , Inibidores de Histona Desacetilases , Animais , Camundongos , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células , Histona Desacetilases/metabolismo , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Histona Desacetilase 1/metabolismo , Histona Desacetilase 1/farmacologia , Relação Estrutura-Atividade
10.
Drug Dev Res ; 84(4): 718-735, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36988106

RESUMO

This study aimed to design and synthesize active hybrids of ß-elemene and nitric oxide (NO) donor pharmacophore as potential agents for treating leukemia. Derivatives reported herein exerted better inhibitory effects against human chronic myeloid leukemia K562 cells compared to ß-elemene (IC50 > 100 µM). The most potent compound 18f showed an IC50 value of 0.53 µM against K562 cells, as well as a high NO release level in vitro. In the K562 xenograft tumor mice model, compound 18f effectively inhibited the growth of the tumor, with a significant inhibition rate of 73.18%. After treatment with compound 18f, the body weight of mice did not decrease, indicating that it possessed good safety profile. All these proved that compound 18f was an excellent potential agent against leukemia.


Assuntos
Antineoplásicos , Leucemia , Sesquiterpenos , Humanos , Animais , Camundongos , Doadores de Óxido Nítrico/farmacologia , Doadores de Óxido Nítrico/uso terapêutico , Sesquiterpenos/farmacologia , Sesquiterpenos/uso terapêutico , Células K562 , Leucemia/tratamento farmacológico , Proliferação de Células , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Óxido Nítrico , Apoptose
11.
J Org Chem ; 88(7): 4592-4605, 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-36976534

RESUMO

This paper describes an efficient strategy to promote alkenyl thioetherifications via the Ni-catalyzed cross-coupling of inactivated or ß-aryl-substituted (E)-alkenyl halides with thio-alcohols/phenols. The present strategy with easy-to-operate reaction conditions represents one of the most effective alkenyl C(sp2)-S bond-forming methods via readily accessible nickel catalysis. Notably, the mildly basic conditions employed facilitate access to a broad scope including protected amino acids, saccharides, and heterocycles. Moreover, this work presents its attractive usefulness by the application in late-stage modifications of several structurally complex natural products and pharmaceuticals.

12.
Eur J Med Chem ; 245(Pt 1): 114900, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36417820

RESUMO

Lung cancer is the second place among the global cancer population in term of the morbidity and mortality, while non-small cell lung cancer (NSCLC) accounts for the largest proportion of all lung cancer patient. Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) are commonly used in the treatment of NSCLC. Despite of the success in coping with EGFR kinase resistance lung cancer using the first three generations of EGFR-TK inhibitors (EGFR-TKIs), the new problem of resistance to Osimertinib occurred due to the newly developed EGFRC797S mutation. In recent years, scientists have proposed several pharmacochemical strategies for the treatment of Osimertinib-resistant NSCLC patients. This paper intends to collect the references in this field since 2021 and to summarize the pharmacochemical processes and strategies in discovery of novel EGFR-TKIs for overcoming C797S mutation in lung cancer patients. It could serve as quick information provider for further structural modifications and drug discovery.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Receptores ErbB/genética , Mutação
13.
Front Surg ; 9: 1007312, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439541

RESUMO

Increasing studies have shown that circular RNAs (circRNAs) and microRNAs (miRNAs) are related to the development of endocrine and metabolic diseases. However, there are few reports on the expression of circRNAs and miRNAs and their related co-expression and the expression of competitive endogenous RNA (ceRNA) in diabetic chronic refractory wounds. In this study, we compared the differential expression of circRNAs and miRNAs in diabetes chronic refractory wounds and normal skin tissues by high-throughput gene sequencing, and screened the differentially expressed circRNAs and miRNAs. Five abnormally expressed circRNAs and seven abnormally expressed miRNAs were detected by reverse transcription quantitative polymerase chain reaction PCR (RT-qPCR)to verify the results of RNA sequencing. We applied gene ontology (GO) to enrich and analyze dysregulated genes and elucidated their main functions via the Kyoto encyclopedia of genes and genomes analysis (KEGG). We constructed coding noncoding gene co-expression networks and ceRNA networks based on significantly abnormally expressed genes. According to the results of coding noncoding gene co-expression network analysis, hsa_circRNA_104175, hsa_circRNA_ 001588, hsa_circRNA_104330, hsa_circRNA_ 100141, hsa_circRNA_103107, and hsa_ circRNA_102044 may be involved in the regulation of the chronic intractable wound healing process in diabetes mellitus. This is particularly true in the regulation of vascular smooth muscle contraction-related pathways and the actin cytoskeleton, which affect the healing of chronic intractable wounds in diabetes. MiR-223-5p, miR-514a-3p, miR-205-5p, and miR-203-3p, which each have a targeting relationship with the above circRNAs, regulate the metabolism of nitrogen compounds in wound tissue by regulating NOD-like receptor signaling pathways, signaling pathways regulating the pluripotency of stem cells, microRNAs in cancer, and ECM-receptor interaction. This study showed circRNAs, miRNAs, and their network are associated with the development of chronic intractable wounds in diabetes, and our research identified the goals for new molecular biomarkers and gene therapy.

14.
Org Biomol Chem ; 20(47): 9255-9271, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36399007

RESUMO

Alkenes represent one of the most useful building blocks for organic synthesis, owing to their abundance and versatile reactivity. Transition metal (Pd, Cu, Co, Ni, Fe, etc.) catalyzed difunctionalization of alkenes provides efficient access to substituted molecules from readily available alkenes by installing functional groups across their carbon-carbon double bonds. Particularly, Nickel-based catalytic complexes have attracted a great deal of attention. This is because they are prone to undergoing oxidative addition and slow ß-hydride elimination, and can access both two-electron and radical pathways. Numerous elegant Ni-catalyzed cross-coupling methods, e.g., (hetero)arylboration, alkenylboration, alkylboration and alkynylboration of alkenes, have been developed with broad scopes and a high tolerance to a variety of functional groups. Therefore, the Ni-catalyzed carboboration of alkenes has become an efficient synthetic protocol to deliver substituted compounds by the cross-coupling of alkenes, electrophiles, and B2Pin2. Despite this progress, a number of challenging issues remaining in the field include broadening the types of carboboration reactions, especially the asymmetric ones, diversifying electrophile types (which is limited to halogens for now) and gaining profound insight into the reaction mechanisms. This review summarizes the recent progress in this emerging field from the literature published since 2018. It will provide the scientific community with convenience to access collective information and to accelerate their further research in order to broaden the scope of methodology and application in drug discovery programs.


Assuntos
Alcenos , Níquel
15.
Bioorg Med Chem ; 74: 117049, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36240626

RESUMO

ß-Elemene is the major constituent of the antitumor drugs elemene extract approved in China. By incorporating macrocyclization strategy into the ß-elemene skeleton, we designed a series of novel macrocycles retaining three key carbon-carbon double bonds. Four different methods have been successfully developed for these challenging ring systems. A total of twenty-eight 14- to 24-membered macrocycles were synthesized. Most of these macrocycles exhibited good antitumor activity against several cancer cell lines (PC-3, A549, U87MG, U251 and HCT116), with up to 40 folds improvement of activity comparing to ß-elemene. Additionally, X-ray single crystal structures of compounds Ic, Ip, and IIh were successfully solved as the proof of macrocycle formation. The results warrant the further investigation of this novel class macrocycles in pharmacokinetic and pharmacodynamics studies, which will be reported in due course.


Assuntos
Antineoplásicos , Sesquiterpenos , Linhagem Celular Tumoral , Sesquiterpenos/química , Antineoplásicos/química , Carbono , China , Apoptose
16.
J Enzyme Inhib Med Chem ; 37(1): 2403-2416, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36065895

RESUMO

A series of novel N-alkyl-N-hydroxyl carboximates derived from ß-elemene were fortuitously discovered. Most of them showed more potent anti-proliferative activities than their lead compound ß-elemene (1). Notably, compound 11i exhibited significant inhibitory effects on the proliferation of three lung cell lines (H1975, A549 and H460) and several other tumour cell lines (H1299, U87MG, MV4-11, and SU-DHL-2). Preliminary mechanistic studies revealed that compound 11i could significantly induce cell apoptosis. Further in vivo study in the H460 xenograft mouse model validated the anti-tumour activities of 11i with a greater tumour growth inhibition (TGI, 68.3%) than ß-elemene and SAHA (50.1% and 55.9% respectively) at 60 mg/kg ip dosing, without obvious body weight loss and toxicity. Thus, such N-alkyl-N-hydroxyl carboximate class of compounds exemplified as 11i demonstrated potent anticancer activities both in vitro and in vivo, and should warrant further investigation for potential anticancer therapy.


Assuntos
Neoplasias Pulmonares , Sesquiterpenos , Animais , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Sesquiterpenos/farmacologia
17.
Chem Sci ; 13(23): 6959-6966, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35774167

RESUMO

Herein, we present a facile and efficient allylation method via Ni-catalyzed cross-electrophile coupling of readily available allylic acetates with a variety of substituted alkenyl bromides using zinc as the terminal reductant. This Ni-catalyzed modular approach displays excellent functional group tolerance and a broad substrate scope, which the creation of a series of 1,4-dienes including several structurally complex natural products and pharmaceutical motifs. Moreover, the coupling strategy has the potential to realize enantiomeric control. The practicality of this transformation is demonstrated through the potent modification of the naturally antitumor active molecule ß-elemene.

18.
Molecules ; 27(8)2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35458687

RESUMO

As one of the key phosphatidylinositol 3-kinase-related kinases (PIKKs) family members, ataxia telangiectasia and RAD3-related protein kinase (ATR) is crucial in maintaining mammalian cell genomic integrity in DNA damage response (DDR) and repair pathways. Dysregulation of ATR has been found across different cancer types. In recent years, the inhibition of ATR has been proven to be effective in cancer therapy in preclinical and clinical studies. Importantly, tumor-specific alterations such as ATM loss and Cyclin E1 (CCNE1) amplification are more sensitive to ATR inhibition and are being exploited in synthetic lethality (SL) strategy. Besides SL, synergistic anticancer effects involving ATRi have been reported in an increasing number in recent years. This review focuses on the recent advances in different forms of synergistic antitumor effects, summarizes the pharmacological benefits and ongoing clinical trials behind the biological mechanism, and provides perspectives for future challenges and opportunities. The hope is to draw awareness to the community that targeting ATR should have great potential in developing effective anticancer medicines.


Assuntos
Ataxia Telangiectasia , Neoplasias , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Dano ao DNA , Mamíferos/metabolismo , Neoplasias/tratamento farmacológico , Proteínas Quinases/metabolismo
19.
Eur J Med Chem ; 231: 114143, 2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35101649

RESUMO

Post-translational modifications (PTMs) of histone by histone demethylases (KDMs) play an important role in the regulation of gene expression, which implicates the development of various human cancers and other diseases. Discovering and developing inhibitors targeting KDMs have become an active and fast-growing research area over the past decades. In this review, the latest emerging small-molecule inhibitors of KDMs were surveyed with the emphasis on the literature since 2018, including lysine specific demethylases (LSD or KDM1) inhibitors and JmjC family N-methyl lysine demethylases (JmjC KDMs, i.e. KDM2-7) inhibitors. The drug design strategy, the structure-activity relationships (SARs), the analysis and insight of co-crystal structures, and the mechanisms of action (MOA) were also discussed.


Assuntos
Descoberta de Drogas , Histona Desmetilases , Histonas/metabolismo , Humanos , Histona Desmetilases com o Domínio Jumonji , Lisina/metabolismo , Relação Estrutura-Atividade
20.
J Enzyme Inhib Med Chem ; 37(1): 379-385, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35012394

RESUMO

Elemene is a second-line broad-spectrum anti-tumour drug that has been used in China for more than two decades. However, its main anti-tumour ingredient, ß-elemene, has disadvantages, including excessive lipophilicity and relatively weak anti-tumour efficacy. To improve the anti-tumour activity of ß-elemene, based on its minor molecular weight character, we introduced furoxan nitric oxide (NO) donors into the ß-elemene structure and designed six series of new generation ß-elemene NO donor hybrids. The synthesised compounds could effectively release NO in vitro, displayed significant anti-proliferative effects on U87MG, NCI-H520, and SW620 cell lines. In the orthotopic glioma model, compound Id significantly and continuously suppressed the growth of gliomas in nude mice, and the brain glioma of the treatment group was markedly inhibited (>90%). In short, the structural fusion design of NO donor and ß-elemene is a feasible strategy to improve the in vivo anti-tumour activity of ß-elemene.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Glioma/tratamento farmacológico , Óxido Nítrico/farmacologia , Oxidiazóis/farmacologia , Sesquiterpenos/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Glioma/patologia , Humanos , Camundongos , Camundongos Nus , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Óxido Nítrico/síntese química , Óxido Nítrico/química , Oxidiazóis/síntese química , Oxidiazóis/química , Sesquiterpenos/síntese química , Sesquiterpenos/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA